OREILLY"

Practical Cloud
Native Security
with Falco

Risk and Threat Detection for Containers,

Raw & Unedited

Compliments of

Loris egioanni
& Leonardo Grasso

Sysdig

/)

Run Confidently with
Secure DevOps

Security for containers,
Kubernetes, and cloud

» Built on an open source foundation
» Deep visibility across containers and cloud
» Radically simple to run and scale

\Q-)sysdig /
Creator of Falco I

https://sysdig.com/opensource/falco/

Practical Cloud Native Security
with Falco

Risk and Threat Detection for Containers,
Kubernetes, and Cloud

With Early Release ebooks, you get books in their earliest form—the
authors’ raw and unedited content as they write—so you can take

advantage of these technologies long before the official release of these
titles.

Loris Degioanni and Leonardo Grasso

Practical Cloud Native Security with Falco

by Loris Degioanni and Leonardo Grasso

Copyright © 2022 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or
corporate(@oreilly.com.

e Acquisitions Editor: Jennifer Pollock

e Development Editor: Sarah Grey

e Production Editor: Gregory Hyman

e Copyeditor: Rachel Head

e Proofreader: Kim Wimpsett

e Indexer: WordCo Indexing Services, Inc.
e Interior Designer: David Futato

e Cover Designer: Karen Montgomery

e [llustrator: Kate Dullea

e August 2022: First Edition

Revision History for the Early Release

http://oreilly.com/

2021-11-09: First Release

2021-12-09: Second Release

2022-02-22: Third Release

2022-05-05: Fourth Release
2022-07-15: Fifth Release

See http.://oreilly.com/catalog/errata.csp?isbn=9781098118570 for release
details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc.
Practical Cloud Native Security with Falco, the cover image, and related
trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not
represent the publisher’s views. While the publisher and the authors have
used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the authors disclaim
all responsibility for errors or omissions, including without limitation
responsibility for damages resulting from the use of or reliance on this
work. Use of the information and instructions contained in this work is at
your own risk. If any code samples or other technology this work contains
or describes 1s subject to open source licenses or the intellectual property
rights of others, it is your responsibility to ensure that your use thereof
complies with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and Sysdig. See our
statement of editorial independence.

978-1-098-11857-0
[LSI]

http://oreilly.com/catalog/errata.csp?isbn=9781098118570
https://oreil.ly/editorial-independence

Preface

The advent of modern computing stacks is radically changing how we think
about security. In the old data center days, security practitioners thought of
software applications as medieval castles: securing them involved building
big walls with small, well-guarded openings. Modern cloud-based software
looks more like a bustling modern city: people move freely inside it and
across its limits to consume and provide services and buy, sell, build, and
fix things.

As today’s urban planners know, big walls and guarded entrances alone are
not enough to secure a city. A better approach involves widespread,
granular visibility: a network of security cameras, for example, plus the
ability to view their footage and react to any threats they capture in real
time.

This book is about security for modern applications, using the open source
tool that the industry has embraced as the “security camera” for the cloud
native stack: Falco. Falco is a cloud native runtime security project
designed to protect software that runs in the cloud by detecting unexpected
behavior, intrusions, and data theft in real time. It’s the de facto threat
detection engine for Kubernetes and for cloud infrastructure, deployed by
countless users, from single-machine test environments to some of the
biggest computing environments on the planet. We’ll teach you how you
can protect applications as they run by detecting threats and
misconfigurations in workloads and in the cloud infrastructure where they
operate.

We have a very practical goal in this book: giving you the knowledge you
need to successfully deploy runtime security in your environment,
regardless of its scale, using Falco. By the time you’ve finished reading the
book, you will have a solid understanding of how Falco works: you’ll be
able to install it in any environment, tune its performance, customize it for
your needs, collect and interpret its data, and even extend it.

Who Is This Book For?

We wrote this book primarily for security operators and architects who want
to implement runtime security and threat detection in production in their
modern computing environments. However, we’ve designed it to be
approachable even for readers with limited or no experience in the field. For
that reason, we only require that you have familiarity with the most
important cloud computing services, with containers, and with Kubernetes.

We’ll also cover more advanced topics like deployment at scale,
optimization, and rule writing that even expert users will find useful. So,
even if you are familiar with runtime security, and perhaps are already using
Falco, this book will help you step up your game. The latter part of the book
requires basic knowledge of programming languages like Go. Developers
who want to extend or customize Falco will find much value here. Finally,
we’ve geared the last chapter of the book toward those who are considering
becoming Falco contributors—we hope we’ll inspire you to join them!

Overview

The book is divided into four parts, organized in order of increasing
complexity, with each successive part building on the previous one. To help
you get oriented, let’s take a look at the content of each part.

Part I: The Basics

Part [is about what Falco is and does. Here, we will teach you the
fundamental concepts behind Falco and guide you through your first local
deployment:

e Chapter 1, “Introducing Falco”, gives an overview of what Falco is,
including a high-level view of its functionality and an introductory
description of each of its components. The chapter includes a brief
history of Falco and a look at the tools that inspired it.

e Chapter 2, “Getting Started with Falco on Your L.ocal Machine”,
guides you through the process of installing a single Falco instance on
your local Linux box. The chapter includes instructions on how to run
Falco and generate your first notification output.

Part ll: The Architecture of Falco

Part II will teach you about the intricacies of Falco’s architecture and inner
workings:

Chapter 3, “Understanding Falco’s Architecture”, dives into the details
of Falco sensors, how data collection happens, and what components
are involved in processing it. The architectural understanding you will
gain from this chapter is the base for the rest of the book.

Chapter 4, “Data Sources”, is about understanding the two main data
sources you can use in Falco: system calls and plugins. We explain
what the data produced by these sources is, how it is collected, and
how Falco’s collection stack compares with alternative approaches.

Chapter 5, “Data Enrichment”, covers techniques Falco uses to enrich
the data it collects. Enrichment consists of adding layers of contextual
information to the collected data; for example, container IDs,
Kubernetes labels, or cloud provider tags. This chapter explains how to
configure Falco to collect enrichment metadata and how to customize
it to add your own metadata.

Chapter 6, “Fields and Filters”, covers one of the most important
concepts in Falco—the filtering engine—and the fields at its base. The
chapter i1s structured as a reference for the language syntax (including
operators) and the fields.

Chapter 7, “Falco Rules”, introduces rules and their syntax, including
constructs like lists and macros that you will use routinely when
customizing Falco.

Chapter 8, “The Output Framework”, describes the mechanism Falco
uses to deliver notifications to output channels and the channels
available in Falco, and teaches you how to configure and use them.

Part Ill: Running Falco in Production

Part III is the reference manual for the serious Falco user. This part of the
book will teach you everything you need to know to deploy, configure, run,
and tune Falco in any environment:

Chapter 9, “Installing Falco”, presents approaches to installing Falco
in production environments, with detailed instructions.

Chapter 10, “Configuring and Running Falco”, covers how Falco’s
configuration system works. This chapter will help you understand and
use Falco settings, including command-line options, environment
variables, the configuration file, and rules files.

Chapter 11, “Using Falco for Cloud Security”, offers a general
overview of cloud security, then goes into the specifics of AWS threat
detection using Falco’s CloudTrail plugin. It takes a practical approach
and includes clear and complete instructions for setting up cloud
security in your environment using Falco.

Chapter 12, “Consuming Falco Events”, focuses on what you can do
with Falco’s detections. It covers tools that help you work with Falco
outputs, like falco-explorer and Falcosidekick, and helps you
understand which Falco events are useful to observe and analyze as
well as how to process them.

Part IV: Extending Falco

Part IV is a reference for developers, covering methods for extending Falco:

e Chapter 13, “Writing Falco Rules”, is about customizing and
extending Falco’s detections. You will learn how to write new rules
and tune existing rules for your needs. In addition to the basics of rule
writing, the chapter covers advanced topics like noise reduction,
performance optimization, and tagging.

e Chapter 14, “Falco Development”, is about working with Falco’s
source code. It begins with an overview of the code base, then dives
into two important ways of extending Falco: using the gRPC API and
the plugins framework. You will find several examples that you can
use as the basis for your coding adventures.

e Chapter 15, “How to Contribute”, talks about the Falco community
and shows you how to contribute to it. It’s ideal reading if, after
staying with us for the whole book, you are excited as we are about
Falco!

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic
Indicates new terms, URLs, email addresses, filenames, and file
extensions.
Constant width

Used for command-line input and program listings, as well as within
paragraphs to refer to commands and program elements such as variable
or function names, data types, and environment variables.

Constant width bold

Shows commands or other text that should be typed literally by the user.
Also used occasionally in program listings to highlight text of interest.

Constant width italic

Shows text that should be replaced with user-supplied values or by
values determined by context.

TIP

This element signifies a tip or suggestion.

NOTE

This element signifies a general note.

WARNING

This element indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, if example code
is offered with this book, you may use it in your programs and
documentation. You do not need to contact us for permission unless you’re
reproducing a significant portion of the code. For example, writing a
program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book
and quoting example code does not require permission. Incorporating a
significant amount of example code from this book into your product’s
documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Practical
Cloud Native Security with Falco, by Loris Degioanni and Leonardo Grasso
(O’Reilly). Copyright 2022 O’Reilly Media, Inc., 978-1-098-11857-0.”

If you feel your use of code examples falls outside fair use or the
permission given above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning

For more than 40 years, O’Reilly Media has provided technology and
business training, knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and
expertise through books, articles, and our online learning platform.
O’Reilly’s online learning platform gives you on-demand access to live
training courses, in-depth learning paths, interactive coding environments,
and a vast collection of text and video from O’Reilly and 200+ other
publishers. For more information, visit attp.://oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

mailto:permissions@oreilly.com
http://oreilly.com/

e 707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at htips.//oreil. ly/practical-
cloud-native-security-falco.

Email bookquestions@oreill).com to comment or ask technical questions
about this book.

For news and information about our books and courses, visit
https://oreilly.com.

Find us on LinkedIn: Attps.//linkedin.com/company/oreilly-media

Follow us on Twitter: htips.://twitter.com/oreillymedia

Watch us on YouTube: Atips://www.youtube.com/oreillymedia

Acknowledgments

We would like to start by thanking, from the bottom of our hearts, the Falco
community: the maintainers who spend countless hours running and
growing the project with incredible passion; the contributors, big and small,
who make Falco better every day; the adopters and champions who give
Falco a chance and provide valuable feedback. Falco, clearly, is the product
of your love and talent, and it will be an honor for us if this book can
showcase your incredible work.

Thanks also to the Cloud Native Computing Foundation, for providing a
good home for Falco and supporting its growth.

We would like to thank as well the people who helped us and supported us
while writing this book: in particular, our project manager, Tammy Yue, and
our O’Reilly editor, Sarah Grey. You have been not only very professional
and helpful, but also extremely gracious, constructive, and patient. Working
with you has been a true pleasure.

Finally, this book would not have been possible without the support of
Sysdig, the company where we both work. We truly appreciate working for

https://oreil.ly/practical-cloud-native-security-falco
mailto:bookquestions@oreilly.com
https://oreilly.com/
https://linkedin.com/company/oreilly-media
https://twitter.com/oreillymedia
https://www.youtube.com/oreillymedia

an organization that not only understands but actively supports open source,
and that embraces our belief that the future of security is open.

Leonardo

One day, while I was talking to Loris, he proposed that we should write a
book together. So as I’'m here, I have to thank him first. Working on this
idea with him was one of the most challenging but, at the same time, fun
things I’ve done in my life. Shall we do it again? As a first-time author,
writing this book has been an incredible new adventure for me that
wouldn’t have been possible without the help and love of my family. So, I
would like to thank my shining and beloved Ada, who has always supported
me and has given me our little Michelangelo. I also want to thank our little
boy for waiting in his mommy’s belly until right after his daddy completed
writing this book. Together with Ma~ (read “Matilde,” our little kitten who
purred next to me while I was writing), they have accompanied me with
patience and joy during this journey.

Last but not least, I also have to thank my parents, sister, and uncles with all
my heart. They have always believed in me, sustained me, and helped me
whenever needed. I couldn’t make it through without them, seriously.

Loris

I would like to thank my wife Stacey, the love of my life, for her patience
and undeterred support for what I do. Thank you for not letting me starve,
drown, or generally injure myself during the production of this book.

I also want to thank my three kids, Josephine, Vincenzo, and August, for
bringing happiness to every minute of my life, including the time spent
working on this publication. Your frequent questions and interruptions
made writing this book more challenging but also much more pleasant. I’'m
looking forward to reading the books that you will publish when you grow

up.
I would like to thank my parents for supporting me at (and before) the
beginning of my career. [wouldn’t be writing this preface today without the

seeds that you planted many years ago and watered with love and
generosity.

This book would have not been possible without my coauthor, Leo. The two
of us had to spend a /ot of time together to produce this work, and every
minute with him was pleasant, constructive, and fun. Leo, I’m looking
forward to spending time with you on more fun and ambitious projects in
the future.

Part l. The Basics

Chapter 1. Introducing Falco

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the
authors’ raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the first chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at sgrey(@oreilly.com.

The goal of this first chapter of the book is to explain what Falco is. Don’t
worry, we’ll take it easy! We will first look at what Falco does, including a
high-level view of its functionality and an introductory description of each
of its components. We’ll explore the design principles that inspired Falco
and still guide its development today. We’ll then discuss what you can do
with Falco, what is outside its domain, and what you can better accomplish
with other tools. Finally, we’ll provide some historical context to put things
into perspective.

Falco in a Nutshell

At the highest level, Falco is pretty straightforward: you deploy it by
installing multiple sensors across a distributed infrastructure. Each sensor
collects data (from the local machine or by talking to some API), runs a set
of rules against it, and notifies you if something bad happens. Figure 1-1
shows a simplified diagram of how it works.

mailto:sgrey@oreilly.com

T System calls

Sensor

b
.

U System calls

N o

Centralized

r

Audit logs collector

" Kubernetes

o

R
F

CloudTrail

AWS

Figure I-1. Falco's high-level architecture

You can think of Falco like a network of security cameras for your
infrastructure: you place the sensors in key locations, they observe what’s
going on, and they ping you if they detect harmful behavior. With Falco,
bad behavior is defined by a set of rules that the community created and
maintains for you, and that you can customize or extend for your needs. The
alerts generated by your fleet of Falco sensors can theoretically stay in the
local machine, but in practice they are typically exported to a centralized
collector. For centralized alert collection, you can use a general-purpose
security information and event management (SIEM) tool or a specialized
tool like Falcosidekick. (We’ll cover alert collection extensively in
Chapter 12.)

Now let’s dig a little deeper into the Falco architecture and explore its main
components, starting with the sensors.

Sensors

Figure 1-2 shows how Falco sensors work.

Sensor

Alerts
Events

Figure 1-2. Falco sensor architecture

The sensor consists of an engine that has two inputs: a data source and a set
of rules. The sensor applies the rules to each event coming from the data
source. When a rule matches an event, an output message is produced. Very
straightforward, right?

Data Sources

Each sensor is able to collect input data from a number of sources.
Originally, Falco was designed to exclusively operate on system calls,
which to date remain one of its most important data sources. We’ll cover
system calls in detail in Chapters 3 and 4, but for now you can think of
them as what a running program uses to interface with its external world.
Opening or closing a file, establishing or receiving a network connection,
reading and writing data to and from the disk or the network, executing
commands, and communicating with other processes using pipes or other
types of interprocess communication are all examples of system call usage.

Falco collects system calls by instrumenting the kernel of the Linux
operating system (OS). It can do this in two different ways: deploying a
kernel module (i.e., a piece of executable code that can be installed in the
operating system kernel to extend the kernel’s functionality) or using a
technology called eBPF, which allows running of scripts that safely perform
actions inside the OS. We’ll talk extensively about kernel modules and
eBPF in Chapter 4.

Tapping into this data gives Falco incredible visibility into everything that
is happening in your infrastructure. Here are some examples of things Falco
can detect for you:

e Privilege escalations

e Access to sensitive data

e Ownership and mode changes

e Unexpected network connections or socket mutations
e Unwanted program execution

e Data exfiltration

e Compliance violations

Falco has also been extended to tap into other data sources besides system
calls (we’ll show you examples throughout the book). For example, Falco
can monitor your cloud logs in real time and notify you when something
bad happens in your cloud infrastructure. Here are some more examples of
things it can detect for you:

e When a user logs in without multifactor authentication
e When a cloud service configuration is modified

e When somebody accesses one or more sensitive files in an Amazon
Web Services (AWS) S3 bucket

New data sources are added to Falco frequently, so we recommend
checking the website and Slack channel to keep up with what’s new.

Rules

Rules tell the Falco engine what to do with the data coming from the
sources. They allow the user to define policies in a compact and readable
format. Falco comes preloaded with a comprehensive set of rules that cover
host, container, Kubernetes, and cloud security, and you can easily create

https://falco.org/
https://oreil.ly/Y4bUt

your own rules to customize it. We’ll spend a lot of time on rules, in
particular in Chapters 7 and 13; by the time you’re done reading this book,
you’ll be a total master at them. Here’s an example to whet your appetite:

- rule: shell_in_container
desc: shell opened inside a container
condition: spawned _process and container.id != host and proc.name = bash
output: shell in a container (user=%user.name container_id=%container.id)
Source: syscall
priority: WARNING

This rule detects when a bash shell is started inside a container, which is
normally not a good thing in an immutable container-based infrastructure.
The core entries in a rule are the condition, which tells Falco what to look
at, and the output, which is what Falco will tell you when the condition
triggers. As you can see, both the condition and the output act on fields, one
of the core concepts in Falco. The condition is a Boolean expression that
combines checks of fields against values (essentially, a filter). The output is
a combination of text and field names, whose values will be printed out in
the notification. Its syntax is similar to that of a print statement in a
programming language.

Does this remind you of networking tools like tcpdump or Wireshark?
Good eye: they were a big inspiration for Falco.

Data Enrichment

Rich data sources and a flexible rule engine help make Falco a powerful
runtime security tool. On top of that, metadata from a disparate set of
providers enriches its detections.

When Falco tells you that something has happened—for example, that a
system file has been modified—you typically need more information to
understand the cause and the scope of the issue. Which process did this?
Did it happen in a container? If so, what were the container and image
names? What was the service/namespace where this happened? Was it in
production or in dev? Was this a change made by root?

Falco’s data enrichment engine helps answer all of these questions by
building up the environment state, including running processes and threads,
the files they have open, the containers and Kubernetes objects they run in,
etc. All of this state is accessible to Falco’s rules and outputs. For example,
you can easily scope a rule so that it only triggers in production or in a
specific service.

Output Channels

Every time a rule is triggered, the corresponding engine emits an output
notification. In the simplest possible configuration, the engine writes the
notification to standard output (which, as you can imagine, usually isn’t
very useful). Fortunately, Falco offers sophisticated ways to route outputs
and direct them to a bunch of places, including log collection tools, cloud
storage services like S3, and communication tools like Slack and email. Its
ecosystem includes a fantastic project called Falcosidekick, specifically
designed to connect Falco to the world and make output collection
effortless (see Chapter 12 for more on this).

Containers and More

Falco was designed for the modern world of cloud native applications, so it
has excellent out-of-the-box support for containers, Kubernetes, and the
cloud. Since this book is about cloud native security, we will mostly focus
on that, but keep in mind that Falco is not limited to containers and
Kubernetes running in the cloud. You can absolutely use it as a host security
tool, and many of its preloaded rules can help you secure your fleet of
Linux servers. Falco also has good support for network detection, allowing
you to inspect the activity of connections, IP addresses, ports, clients, and
servers and receive alerts when they show unwanted or unexpected/atypical
behavior.

Falco’s Design Principles

Now that you understand what Falco does, let’s talk about why it is the way
it 1s. When you’re developing a piece of software of non-negligible
complexity, it’s important to focus on the right use cases and prioritize the
most important goals. Sometimes that means accepting trade-offs. Falco is
no exception. Its development has been guided by a core set of principles.
In this section we will explore why they were chosen and how each of them
affects Falco’s architecture and feature set. Understanding these principles
will allow you to judge whether Falco is a good fit for your use cases and
help you get the most out of it.

Specialized for Runtime

The Falco engine is designed to detect threats while your services and
applications are running. When it detects unwanted behavior Falco should
alert you instantly (at most in a matter of seconds), so you’re informed (and
can react!) right away, not after minutes or hours have passed.

This design principle manifests in three important architectural choices.
First, the Falco engine is engineered as a streaming engine, able to process
data quickly as it arrives rather than storing it and acting on it later. Second,
it’s designed to evaluate each event independently, not to generate alerts
based on a sequence of events; this means correlating different events, even
if feasible, is not a primary goal and is in fact discouraged. Third, Falco
evaluates rules as close as possible to the data source. If possible, it avoids
transporting information before processing it and favors deploying richer
engines on the endpoints.

Suitable for Production

You should be able to deploy Falco in any environment, including
production environments where stability and low overhead are of
paramount importance. It should not crash your apps and should strive to
slow them down as little as possible.

This design principle affects the data collection architecture, particularly
when Falco runs on endpoints that have many processes or containers.

Falco’s drivers (the kernel module and eBPF probe) have undergone many
iterations and years of testing to guarantee their performance and stability.
Collecting data by tapping into the kernel of the operating system, as
opposed to instrumenting the monitored processes/containers, guarantees
that your applications won’t crash because of bugs in Falco.

The Falco engine is written in C++ and employs many expedients to reduce
resource consumption. For example, it avoids processing system calls that
read or write disk or network data. In some ways this is a limitation,
because it prevents users from creating rules that inspect the content of
payloads, but it also ensures that CPU and memory consumption stay low,
which is more important.

Intent-Free Instrumentation

Falco is designed to observe application behavior without requiring users to
recompile applications, install libraries, or rebuild containers with
monitoring hooks. This is very important in modern containerized
environments, where applying changes to every component would require
an unrealistic amount of work. It also guarantees that Falco sees every
process and container, no matter where it comes from, who runs it, or how
long it’s been around.

Optimized to Run at the Edge

Compared to other policy engines (for example, OPA), Falco has been
explicitly designed with a distributed, multisensor architecture in mind. Its
sensors are designed to be lightweight, efficient, and portable, and to
operate in diverse environments. It can be deployed on a physical host, in a
virtual machine, or as a container. The Falco binary is built for multiple
platforms, including ARM.

Avoids Moving and Storing a Ton of Data

Most currently marketed threat detection products are based on sending
large numbers of events to a centralized SIEM tool and then performing

analytics on top of the collected data. Falco is designed around a very
different principle: stay as close as possible to the endpoint, perform
detections in place, and only ship alerts to a centralized collector. This
approach results in a solution that is a bit less capable at performing
complex analytics, but is simple to operate, much more cost-effective, and
scales very well horizontally.

Scalable

Speaking of scale, another important design goal underlying Falco is that it
should be able to scale to support the biggest infrastructures in the world. If
you can run it, Falco should be able to secure it. As we’ve just described,
keeping limited state and avoiding centralized storage are important
elements of this. Edge computing is an important element too, since
distributing rule evaluation is the only approach to scale a tool like Falco in
a truly horizontal way.

Another key part of scalability is endpoint instrumentation. Falco’s data
collection stack doesn’t use techniques like sidecars, library linking, or
process instrumentation. The reason is that the resource utilization of all of
these techniques grows with the number of containers, libraries, or
processes to monitor. Busy machines have many containers, libraries, and
processes—too many for these techniques to work—but they have only one
operating system kernel. Capturing system calls in the kernel means that
you only need one Falco sensor per machine, no matter how big the
machine is. This makes it possible to run Falco on big hosts with a lot of
activity.

Truthful

One other benefit of using system calls as a data source? System calls never
lie. Falco is hard to evade because the mechanism it uses to collect data is
very difficult to disable or circumvent. If you try to evade or get around it,
you will leave traces that Falco can capture.

Robust Defaults, Richly Extensible

Another key design goal was minimizing the time it takes to extract value
from Falco. You should be able to do this by just installing it; you shouldn’t
need to customize it unless you have advanced requirements.

Whenever the need for customization does arise, though, Falco offers
flexibility. For example, you can create new rules through a rich and
expressive syntax, develop and deploy new data sources that expand the
scope of detections, and integrate Falco with your desired notification and
event collection tools.

Simple

Simplicity is the last design choice underpinning Falco, but it’s also one of
the most important ones. The Falco rule syntax is designed to be compact,
easy to read, and simple to learn. Whenever possible, a Falco rule condition
should fit in a single line. Anyone, not only experts, should be able to write
a new rule or modify an existing one. It’s OK if this reduces the
expressiveness of the syntax: Falco is in the business of delivering an
efficient security rule engine, not a full-fledged domain-specific language.
There are better tools for that.

Simplicity is also evident in the processes for extending Falco to alert on
new data sources and integrating it with a new cloud service or type of
container, which is a matter of writing a plugin in any language, including
Go, C, and C++. Falco loads these plugins easily, and you can use them to
add support for new data sources or new fields to use in rules.

What You Can Do with Falco

Falco shines at detecting threats, intrusions, and data theft at runtime and in
real time. It works well with legacy infrastructures but excels at supporting
containers, Kubernetes, and cloud infrastructures. It secures both workloads
(processes, containers, services) and infrastructure (hosts, VMs, network,
cloud infrastructure and services). It is designed to be lightweight, efficient,

and scalable and to be used in both development and production. It can
detect many classes of threats, but should you need more, you can
customize it. It also has a thriving community that supports it and keeps
enhancing it.

What You Cannot Do with Falco

No single tool can solve all your problems. Knowing what you cannot do
with Falco 1s as important as knowing where to use it. As with any tool,
there are trade-offs. First of all, Falco is not a general-purpose policy
language: it doesn’t offer the expressiveness of a full programming
language and cannot perform correlation across different engines. Its rule
engine, instead, is designed to apply relatively stateless rules at high
frequency in many places around your infrastructure. If you are looking for
a powerful centralized policy language, we suggest you take a look at OPA.

Second, Falco is not designed to store the data it collects in a centralized
repository so that you can perform analytics on it. Rule validation is
performed at the endpoint, and only the alerts are sent to a centralized
location. If your focus is advanced analytics and big data querying, we
recommend that you use one of the many log collection tools available on
the market.

Finally, for efficiency reasons, Falco does not inspect network payloads.
Therefore, it’s not the right tool to implement layer 7 (L7) security policies.
A traditional network-based intrusion detection system (IDS) or L7 firewall
is a better choice for such a use case.

Background and History

The authors of this book have been part of some of Falco’s history, and this
final section presents our memories and perspectives. If you are only
interested in operationalizing Falco, feel free to skip the rest of this chapter.
However, we believe that knowing where Falco comes from can give you

https://oreil.ly/nXYQI

useful context for its architecture that will ultimately help you use it better.
Plus, it’s a fun story!

Network Packets: BPF, libpcap, tcpdump, and Wireshark

During the height of the late-1990s internet boom, computer networks were
exploding in popularity. So was the need to observe, troubleshoot, and
secure them. Unfortunately, many operators couldn’t afford the network
visibility tools available at that time, which were all commercially offered
and very expensive. As a consequence, a lot of people were fumbling
around in the dark.

Soon, teams around the world started working on solutions to this problem.
Some involved extending existing operating systems to add packet capture
functionality: in other words, making it possible to convert an off-the-shelf
computer workstation into a device that could sit on a network and collect
all the packets sent or received by other workstations. One such solution,
Berkeley Packet Filter (BPF), developed by Steven McCanne and Van
Jacobson at the University of California at Berkeley, was designed to
extend the BSD operating system kernel. If you use Linux, you might be
familiar with eBPF, a virtual machine that can be used to safely execute
arbitrary code in the Linux kernel (the e stands for extended). eBPF is one
of the hottest modern features of the Linux kernel. It’s evolved into an
extremely powerful and flexible technology after many years of
improvements, but it started as a little programmable packet capture and
filtering module for BSD Unix.

BPF came with a library called /ibpcap that any program could use to
capture raw network packets. Its availability triggered a proliferation of
networking and security tools. The first tool based on libpcap was a
command-line network analyzer called tcpdump, which is still part of
virtually any Unix distribution. In 1998, however, a GUI-based open source
protocol analyzer called Ethereal (renamed Wireshark in 2006) was
launched. It became, and still is, the industry standard for packet analysis.

What tcpdump, Wireshark, and many other popular networking tools have
in common is the ability to access a data source that is rich, accurate, and
trustworthy and can be collected in a non-invasive way: raw network
packets. Keep this concept in mind as you continue reading!

Snort and Packet-Based Runtime Security

Introspection tools like tcpdump and Wireshark were the natural early
applications of the BPF packet capture stack. However, people soon started
getting creative in their use cases for packets. For example, in 1998, Martin
Roesch released an open source network intrusion detection tool called
Snort. Snort is a rule engine that processes packets captured from the
network. It has a large set of rules that can detect threats and unwanted
activity by looking at packets, the protocols they contain, and the payloads
they carry. It inspired the creation of similar tools such as Suricata and
Zeek.

What makes tools like Snort powerful is their ability to validate the security
of networks and applications while applications are running. This is
important because it provides real-time protection, and the focus on runtime
behavior makes it possible to detect threats based on vulnerabilities that
have not yet been disclosed.

The Network Packets Crisis

You’ve just seen what made network packets popular as a data source for
visibility, security, and troubleshooting. Applications based on them
spawned several successful industries. However, trends arose that eroded
packets’ usefulness as a source of truth:

e Collecting packets in a comprehensive way became more and more
complicated, especially in environments like the cloud, where access
to routers and network infrastructure is limited.

e Encryption and network virtualization made it more challenging to
extract valuable information.

e The rise of containers and orchestrators like Kubernetes made
infrastructures more elastic. At the same time, it became more
complicated to reliably collect network data.

These issues started becoming clear in the early 2010s, with the popularity
of cloud computing and containers. Once again, an exciting new ecosystem
was unfolding, but no one quite knew how to troubleshoot and secure it.

System Calls as a Data Source: sysdig

That’s where your authors come in. We released an open source tool called
sysdig, which we were inspired to build by a set of questions: What is the
best way to provide visibility for modern cloud native applications? Can we
apply workflows built on top of packet capture to this new world? What is
the best data source?

sysdig originally focused on collecting system calls from the kernel of the
operating system. System calls are a rich data source—even richer than
packets—because they don’t exclusively focus on network data: they
include file I/O, command execution, interprocess communication, and
more. They are a better data source for cloud native environments than
packets, because they can be collected from the kernel for both containers
and cloud instances. Plus, collecting them is easy, efficient, and minimally
invasive.

sysdig was initially composed of three separate components:

e A kernel capture probe (available in two flavors, kernel module and
eBPF)

e A set of libraries to facilitate the development of capture programs
e A command-line tool with decoding and filtering capabilities

In other words, it was porting the BPF stack to system calls. sysdig was
engineered to support the most popular network packet workflows: trace
files, easy filtering, scriptability, and so on. From the beginning, we also
included native integrations with Kubernetes and other orchestrators, with

the goal of making them useful in modern environments. sysdig
immediately became very popular with the community, validating the
technical approach.

Falco

So what would be the next logical step? You guessed it: a Snort-like tool for
system calls! A flexible rule engine on top of the sysdig libraries, we
thought, would be a powerful tool to detect anomalous behavior and
intrusions in modern apps reliably and efficiently—essentially the Snort
approach, but applied to system calls and designed to work in the cloud.

So, that’s how Falco was born. The first (rather simple) version was
released at the end of 2016 and included most of the important components,
such as the rule engine. Falco’s rule engine was inspired by Snort’s but
designed to operate on a much richer and more generic dataset and was
plugged into the sysdig libraries. It shipped with a relatively small but
useful set of rules. This initial version of Falco was largely a single-
machine tool, with no ability to be deployed in a distributed way. We
released it as open source because we saw a broad community need for it,
and, of course, because we love open source!

Expanding into Kubernetes

As the tool evolved and the community embraced it, Falco’s developers
expanded it into new domains of applicability. For example, in 2018 we
added Kubernetes audit logs as a data source. This feature lets Falco tap
into the stream of events produced by the audit log and detect
misconfigurations and threats as they happen.

Creating this feature required us to improve the engine, which made Falco
more flexible and better suited to a broader range of use cases.
Joining the Cloud Native Computing Foundation

In 2018 Sysdig contributed Falco to the Cloud Native Computing
Foundation (CNCF) as a sandbox project. The CNCF is the home of many

important projects at the foundation of modern cloud computing, such as
Kubernetes, Prometheus, Envoy, and OPA. For our team, making Falco part
of the CNCF was a way to evolve it into a truly community-driven effort, to
make sure it would be flawlessly integrated with the rest of the cloud native
stack, and to guarantee long-term support for it. In 2021 this effort was
expanded by the contribution of the sysdig kernel module, eBPF probe, and
libraries to the CNCEF, as a subproject in the Falco organization. The full
Falco stack is now in the hands of a neutral and caring community.

Plugins and the cloud

As years passed and Falco matured, a couple of things became clear. First,
its sophisticated engine, efficient nature, and ease of deployment make it
suitable for much more than system call-based runtime security. Second, as
software becomes more and more distributed and complex, runtime security
is paramount to immediately detecting threats, both expected and
unexpected. Finally, we believe that the world needs a consistent,
standardized way to approach runtime security. In particular, there is great
demand for a solution that can protect workloads (processes, containers,
services, applications) and infrastructure (hosts, networks, cloud services)
in a converged way.

As a consequence, the next step in the evolution of Falco was adding
modularity, flexibility, and support for many more data sources spanning
across different domains. For example, in 2021 a new plugin infrastructure
was added that allows Falco to tap into data sources like cloud provider logs
to detect misconfigurations, unauthorized access, data theft, and much
more.

A long journey

Falco’s story stretches across more than two decades and links many
people, inventions, and projects that at first glance don’t appear related. In
our opinion, this story exemplifies why open source is so cool: becoming a
contributor lets you learn from the smart people who came before you,

build on top of their innovations, and connect communities in creative
ways.

Chapter 2. Getting Started with
Falco on Your Local Machine

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the
authors’ raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the second chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at sgrey@oreilly.com.

Now that you’re acquainted with the possibilities that Falco offers, what
better way to familiarize yourself with it than to try it? In this chapter, you
will discover how easy it is to install and run Falco on a local machine.
We’ll walk you through the process step-by-step, introducing and analyzing
the core concepts and functions. We will generate an event that Falco will
detect for us by simulating a malicious action, and show you how to read
Falco’s notification output. We’ll finish the chapter by presenting some
manageable approaches to customizing your installation.

Running Falco on Your Local Machine

Although Falco is not a typical application, installing and running it on a
local machine is quite simple—all you need is a Linux host or a virtual
machine and a terminal. There are two components to install: the user space
program (named falco) and a driver. The driver is needed to collect system

mailto:sgrey@oreilly.com

calls, which are one possible data source for Falco. For simplicity, we will
focus only on system call capture in this chapter.

NOTE

You will learn more about the available drivers and why we need them to instrument the
system in Chapter 3 and explore alternative data sources in Chapter 4. For the moment,
you only need to know that the default driver, which is implemented as a Linux kernel
module, is enough to collect system calls and start using Falco.

Several methods are available to install these components, as you will see in
Chapter 8. However, in this chapter we’ve opted to use the binary package.
It works with almost any Linux distribution and has no automation: you can
touch its components with your hands. The binary package includes the
falco program, the falco-driver-loader script (a utility to help you install the
driver), and many other required files. You can download this package from
the official website of The Falco Project, where you’ll also find
comprehensive information about installing it. So, let’s get to it!

Downloading and Installing the Binary Package

Falco’s binary package is distributed as a single tarball compressed with
GNU zip (gzip). The tarball file 1s named falco-<x.y.z>-<arch>.tar.gz,
where <x.y.z> is the version of a Falco release and <arch> is the intended
architecture (e.g., x86 64) for the package.

All the available packages are listed on Falco’s “Download” page. You can
grab the URL of the binary package and download it locally, for example
using curl:

$ curl -L -0 \
https://download.falco.org/packages/bin/x86_ 64/falco-0.32.0-
x86_64.tar.gz

After downloading the tarball, uncompressing and untarring it is quite
simple:

https://falco.org/
https://oreil.ly/Hx6Dy

$ tar -xvf falco-0.32.0-x86_64.tar.gz

The tarball content, which you’ve just extracted, is intended to be copied
directly to the local filesystem’s root (i.e., /), without any special installation
procedure. To copy it, run this command as root:

$ sudo cp -R falco-0.32.0-x86_64/* /

Now you’re ready to install the driver.

Installing the Driver

System calls are Falco’s default data source. In order to instrument the
Linux kernel and collect these system calls, it needs a driver: either a Linux
kernel module or an eBPF probe. The driver needs to be built for the
specific version and configuration of the kernel on which Falco will run.
Fortunately, The Falco Project provides literally thousands of prebuilt
drivers for the vast majority of the most common Linux distributions, with
various kernel versions available for download. If a prebuilt driver for your
distribution and kernel version is not yet available, the files you installed in
the previous section include the source code of both the kernel module and
the eBPF probe, so it is also possible to build the driver locally.

This might sound like a lot, but the falco-driver-loader script you’ve just
installed can do all these steps. All you need to do before using the script is
install a few necessary dependencies:

e Dynamic Kernel Module Support (dkms)
e GNU make
e The Linux kernel headers

Depending on the package manager you’re using, the actual package names
can vary; however, they aren’t difficult to find. Once you’ve installed these
packages, you’re ready to run the falco-driver-loader script as root. If
everything goes well, the script output should look something like this:

$ sudo falco-driver-loader

* Running falco-driver-loader for: falco version=0.32.0, driver
version=39ae7d40496793cf3d3e7890c9bbdc202263836b

* Running falco-driver-loader with: driver=module, compile=yes, download=yes

* Looking for a falco module locally (kernel 5.18.1-arch1-1)

* Trying to download a prebuilt falco module from
https://download.falco.org/driver/39ae7d40496793cf3d3e7890c9bbdc202263836b/falc
o_arch_5.18.1-arch1-1_1.ko

curl: (22) The requested URL returned error: 404

Unable to find a prebuilt falco module

* Trying to dkms install falco module with GCC /usr/bin/gcc

This output contains some useful information. The first line reports the
versions of Falco and the driver that are being installed. The subsequent line
tells us that the script will try to download a prebuilt driver so it can install a
kernel module. If the prebuilt driver is not available, Falco will try to build
it locally. The rest of the output shows the process of building and installing
the module via DKMS, and finally that the module has been installed and
loaded.

Starting Falco

To start Falco, you just have to run it as root:’

$ sudo falco

Mon Jun 6 16:08:29 2022: Falco version 0.32.0 (driver version
39a3e7d40496793cf3d3e7890c9bbdc202263836b)

Mon Jun 6 16:08:29 2022: Falco initialized with configuration file
[/etc/falco/falco.yaml

Mon Jun 6 16:08:29 2022: Loading rules from file /etc/falco/falco_rules.yaml:
Mon Jun 6 16:08:29 2022: Loading rules from file
[/etc/falco/falco_rules.local.yaml:

Mon Jun 6 16:08:29 2022: Starting internal webserver, listening on port 8765

Note the configuration and rules files’ paths. We’ll look at these in more
detail in Chapters 9 and 13. Finally, in the last line, we can see that a web
server has been started; this is done because Falco exposes a health check
endpoint that you can use to test that it’s up and running.

TIP

In this chapter, to get you used to it, we have simply run Falco as an interactive shell
process; therefore, a simple Ctrl-C is enough to end the process. Throughout the book,
we will show you different and more sophisticated ways to install and run it.

Once Falco prints this startup information, it is ready to issue a notification
whenever a condition in the loaded ruleset is met. Right now, you probably
won’t see any notifications (assuming nothing malicious is running on your
system). In the next section, we will generate a suspicious event.

Generating Events

There are millions of ways to generate events. In the case of system calls, in
reality, many events happen continuously as soon as processes are running.
However, to see Falco in action, we must focus on events that can trigger an
alert. As you’ll recall, Falco comes preloaded with an out-of-the-box set of
rules that cover the most common security scenarios. It uses rules to express
unwanted behaviors, so we need to pick a rule as our target and then trigger
it by simulating a malicious action within our system.

In the course of the book, and particularly in Chapter 13, you will learn
about the complete anatomy of a rule, how to interpret and write a condition
using Falco’s rule syntax, and which fields are supported in the conditions
and outputs. For the moment, let’s briefly recall what a rule is and explain
its structure by considering a real example:

- rule: Write below binary dir
desc: an attempt to write to any file below a set of binary directories
condition: >
bin_dir and evt.dir = < and open_write
output: >
File below a known binary directory opened for writing (user=%user.name
user_loginuid=%user.loginuid
command=%proc.cmdline file=%fd.name parent=%proc.pname
pcmdline=%proc.pcmdline gparent=%proc.aname[2] container_id=%container.id
image=%container.image.repository)

priority: ERROR
source: syscall

A rule declaration is a YAML object with several keys. The first key, rule,
uniquely identifies the rule within a ruleset (one or more YAML files
containing rule definitions). The second key, desc, allows the rule’s author
to briefly describe what the rule will detect. The condition key, arguably
the most important one, allows expressing a security assertion using some
straightforward syntax. Various Boolean and comparison operators can be
combined with fields (which hold the collected data) to filter only relevant
events. In this example rule, evt.dir is a field used for filtering. Supported
fields and filters are covered in more detail in Chapter 6.

As long as the condition is false, nothing will happen. The assertion is met
when the condition is true, and then an alert will be fired immediately. The
alert will contain an informative message, as defined by the rule’s author
using the output key of the rule declaration. The value of the priority key
will be reported too. The content of an alert is covered in more detail in the
next section.

The condition’s syntax can also make use of a few more constructs, like
list and macro, that can be defined in the ruleset alongside rules. As the
name suggests, a /ist is a list of items that can be reused across different
rules. Similarly, macros are reusable pieces of conditions. For completeness,
here are the two macros (bin_dir and open_write) utilized in the
condition key of the Write below binary dir rule:

- macro: bin_dir
condition: fd.directory in (/bin, /sbin, /usr/bin, /usr/sbin)

- macro: open_write
condition: (evt.type=open or evt.type=openat) and evt.is_open_write=true and
fd.typechar="f' and fd.num>=0

At runtime, when rules are loaded, macros expand. Consequently, we can
imagine the final rule condition will be similar to:

(evt.type=open or evt.type=openat) and evt.is_open_write=true and
fd.typechar='f' and fd.num>=0

and

evt.dir = <

and

fd.directory in (/bin, /sbin, /usr/bin, /usr/sbin)

Conditions make extensive use of fields. In this example, you can easily
recognize which parts of the condition are fields (evt. type,
evt.is_open_write, fd.typechar, evt.dir, fd.num, and fd.directory)
since they are followed by a comparison operator (e.g., =, >=, in). Field
names contain a dot (.) because fields with a similar context are grouped
together in classes. The part before the dot represents the class (for example,
evt and fd are classes).

Although you might not thoroughly understand the condition’s syntax yet,
you don’t need to at the moment. All you need to know is that creating a file
(which implies opening a file for writing) under one of the directories listed
within the condition (like /bin) should be enough to trigger the rule’s
condition. Let’s try it.

First, start Falco with our target rule loaded. The Write below binary dir rule
is included in /etc/falco/falco_rules.yaml, which is loaded by default when
starting Falco, so you don’t need to copy it manually. Just open a terminal
and run:

$ sudo falco

Second, trigger the rule by creating a file in the /bin directory. A
straightforward way to do this is by opening another terminal window and

typing:

$ sudo touch /bin/surprise

Now, if you return to the first terminal with Falco running, you should find a
line in the log (that is, an alert emitted by Falco) that looks like the
following:

16:52:09.350818073: Error File below a known binary directory opened for
writing (user=root user_loginuid=1000 command=touch /bin/surprise
file=/bin/surprise parent=sudo pcmdline=sudo touch /bin/surprise gparent=zsh
container_id=host image=<NA>)

Falco caught us! Fortunately, that’s exactly what we wanted to happen.
(We’ll look at this output in more detail in the next section.)

Rules let us tell Falco which security policies we want to observe (expressed
by the condition key) and which information we wish to receive (specified
by the output key) if a policy has been violated. Falco emits an alert
(outputs a line of text) whenever an event meets the condition defined by a
rule, so if you run the same command again, a new alert will fire.

After trying out this example, why not test some other rules by yourself? To
facilitate this, the Falcosecurity organization offers a tool called event-
generator. It’s a simple command-line tool that does not require any special
installation steps. You can download the latest release and uncompress it
wherever you prefer. It comes with a collection of events that match many
of the rules included in the default Falco ruleset. For example, to generate
an event that meets the condition expressed by the Read sensitive file
untrusted rule, you can type the following in a terminal window:

$./event-generator run syscall.ReadSensitiveFileUntrusted

Be aware that this tool might alter your system. For example, since the tool’s purpose is
to reproduce real malicious behavior, some actions modify files and directories such as
/bin, /etc, and /dev. Make sure you fully understand the purpose of this tool and its
options before using it. As the online documentation recommends, running event-
generator in a container is safer.

Interpreting Falco’s Output

Let’s take a closer look at the alert notification our experiment produced to
see what important information it contains:

https://oreil.ly/CZGpM
https://oreil.ly/dL8gV

16:52:09.350818073: Error File below a known binary directory opened for
writing (user=root user_loginuid=1000 command=touch /bin/surprise
file=/bin/surprise parent=sudo pcmdline=sudo touch /bin/surprise gparent=zsh
container_id=host image=<NA>)

This apparently complex line is actually composed of only three main
elements separated by whitespace: a timestamp, severity level, and message.
Let’s examine each of these:

Timestamp

Intuitively, the first element is the timestamp (followed by a colon:
16:52:09.350818073:). That’s when the event was generated. By
default, it’s displayed in the local time zone and includes nanoseconds.
You can, if you like, configure Falco to display times in ISO 8601
format, including the date, nanoseconds, and timezone offset (in UTC).

Severity

The second element indicates the severity (e.g., Error) of the alert, as
specified by the priority key in the rule. It can assume one of the
following values (ordered from the most to the least severe):
Emergency, Alert, Critical, Error, Warning, Notice,
Informational, or Debug. Falco allows us to filter out those alerts that
are not important to us and thus reduce the noisiness of the output by
specifying the minimum severity level we want to get alerts about. The
default is debug, meaning all severity levels are included by default, but
we can change this by altering the value of the priority parameter in
the /etc/falco/falco.yaml configuration file. For example, if we change
the value of this parameter to notice, then we will not receive alerts
about rules with priority equal to INFORMATIONAL or DEBUG.

Message

The last and the most essential element is the message. This is a string
produced according to the format specified by the output key. Its
peculiarity lies in using placeholders, which the Falco engine replaces
with the event data, as we will see in a moment.

Normally, the output key of a rule begins with a brief text description
to facilitate identifying the type of problem (e.g., File below a known
binary directory opened for writing). Then it includes some
placeholders (e.g., %user.name), which will be populated with actual
values (e.g., root) when outputted. You can easily recognize
placeholders since they start with a % symbol followed by one of the
event’s supported fields. These fields can be used in both the condition
key and the output key of a Falco rule.

The beauty of this feature is that you can have a different output format for
each security policy. This immediately gives you the most relevant

information related to the violation, without having to navigate hundreds of
fields.

Although this textual format likely includes all the information you need
and 1s suitable for consumption by many other programs, it’s not the only
option for output—you can instruct Falco to output notifications in JSON
format by simply changing a configuration parameter. The JSON output
format has the advantage of being easily parsable by consumers. When
enabled, Falco will emit as output a JSON line for each alert that will look
like the following, which we’ve pretty-printed to improve readability:

{
"output": "11:55:33.844042146: Error File below a known binary directory

opened for writing (user=root user_loginuid=1000 command=touch /bin/surprise
file=/bin/surprise parent=sudo pcmdline=sudo touch /bin/surprise gparent=zsh
contailner_id=host image=<NA>)",
"priority": "Error",
"rule": "Write below binary dir",
"time": "2021-09-13T09:55:33.844042146Z",
"output_fields": {
"container.id": "host",
"container.image.repository": null,
"evt.time": 1631526933844042146,
"fd.name": "/bin/surprise",
"proc.aname[2]": "zsh",
"proc.cmdline": "touch /bin/surprise",
"proc.pcmdline": "sudo touch /bin/surprise",
"proc.pname": "sudo",
"user.loginuid": 1000,

"user.name": "root"

}
}

This output format reports the same text message as before. Additionally,
each piece of information is separated into distinct JSON properties. You
may also have noticed some extra data: for example, the rule identifier is
present this time ("rule": "Write below binary dir").

To try it right now, when starting Falco, simply pass the following flag as a
command-line argument to override the default configuration:

$ sudo falco -o json_output=true

Alternatively, you can edit /etc/falco/falco.yaml and set json_output to
true. This will enable the JSON format every time Falco starts, without the
flag.

Customizing Your Falco Instance

When you start Falco, it loads several files. In particular, it first loads the
main (and only) configuration file, as the startup log shows:

Mon Jun 6 16:08:29 2022: Falco initialized with configuration file
[etc/falco/falco.yaml

Falco looks for its configuration file at /etc/falco/falco.yaml, by default.
That’s where the provided configuration file is installed. If desired, you can
specify another configuration file path using the -c command-line argument
when running Falco. Whatever file location you prefer, the configuration
must be a YAML file mainly containing a collection of key/value pairs.
Let’s take a look at some of the available configuration options.

Rules Files

One of the most essential options, and the first you’ll find in the provided
configuration file, is the list of rules files to be loaded:

rules_file:
- Jetc/falco/falco_rules.yaml
- Jetc/falco/falco_rules.local.yaml

- Jetc/falco/rules.d

Despite the naming (for backward compatibility), rules_file allows you
to specify multiple entries, each of which can be either a rules file or a
directory containing rules files. If the entry is a file, Falco reads it directly.
In the case of a directory, Falco will read every file in that directory.

The order matters here. The files are loaded in the presented order (files
within a directory are loaded in alphabetical order). Users can customize
predefined rules by simply overriding them in files that appear later in the
list. For example, say you want to turn off the Write below binary dir rule,
which is included in /etc/falco/falco rules.yaml. All you need to do is edit
/etc/falco/falco_rules.local.yaml (which appears below that file in the list
and 1s intended to add local overrides) and write:

- rule: Write below binary dir
enabled: false

Output Channels

There is a group of options that control Falco’s available output channels,
allowing you to specify where the security notifications should go.
Furthermore, you can enable more than one simultaneously. You can easily
recognize them within the configuration file (/etc/falco/falco.yaml) since
their keys are suffixed with _output.

By default, the only two enabled output channels are stdout_output,
which instructs Falco to send alert messages to the standard output, and
syslog_output, which sends them to the system logging daemon. Their
configurations are:

stdout_output:
enabled: true

syslog _output:
enabled: true

Falco provides several other advanced built-in output channels. For
example:

file_output:
enabled: false
keep_alive: false
filename: ./events.txt

When file_output is enabled, Falco will also write its alerts to the file
specified by the subkey filename.

Other output channels allow you to consume alerts in sophisticated ways
and integrate with third parties. For instance, if you want to pass the Falco
output to a local program, you can use:

program_output:
enabled: false
keep_alive: false
program: mail -s "Falco Notification" someone@example.com

Once you enable this, Falco will execute the program for each alert and
write its content to the program’s standard output. You can set the program
subkey to any valid shell command, so this is an excellent opportunity to
show off your favorite one-liners.

If you simply need to integrate with a webhook, a more convenient option is
to use the http_output output channel:

http_output:
enabled: false
url: http://some.url

A simple HTTP POST request will be sent to the specified url for each
alert. That makes it really easy to connect Falco to other tools, like

Falcosidekick, which will forward alerts to Slack, Teams, Discord,
Elasticsearch, and many other destinations.

Last but not least, Falco comes with a gRPC API and a corresponding
output, grpc_output. Enabling the gRPC API and gRPC output channel
allows you to connect Falco to falco-exporter, which, in turn, will export
metrics to Prometheus.

NOTE

Falcosidekick and falco-exporter are open source projects you can find under the
Falcosecurity GitHub organization. In Chapter 12, you will meet these tools again and
learn how to work with outputs.

Conclusion

This chapter showed you how to install and run Falco on your local machine
as a playground. You saw some simple ways to generate events and learned
how to decode the output. We then looked at how to use the configuration
file to customize Falco’s behavior. Loading and extending rules are the
primary ways to instruct Falco on what to protect. Likewise, configuring the
output channels empowers us to consume notifications in ways that meet
our needs.

Armed with this knowledge, you can start experimenting with Falco
confidently. The rest of this book will expand on you’ve learned here and
eventually help you master Falco completely.

1 Falco needs to run with root privileges to operate the driver that in turn collects system calls.
However, alternative approaches are possible. For example, you can learn from Falco’s
“Running” page how to run Falco in a container with the principle of least privilege.

https://oreil.ly/CF0Bk
https://oreil.ly/6VD67

Part Il. The Architecture of
Falco

Chapter 3. Understanding
Falco’s Architecture

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the
authors’ raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the third chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at sgrey(@oreilly.com.

Welcome to Part II of the book! In Part I, you learned what Falco is and
what it does. You also took a high-level look at its architecture, installed it
on your machine, and took it for a spin. Now it’s time to step up your game!

In this part of the book (Chapters 3 through 8), we’ll get into the inner
workings of Falco. You will learn about its architecture in more detail,
including its main components and how data flows across them. We’ll show
you how Falco interfaces with the kernel of the operating system and with
the cloud logs to collect data, and how this data is enriched with context and
metadata. Chapter 6 will then introduce you to the important topic of fields
and filters, while Chapter 7 will get you more familiar with Falco rules.
We’ll conclude Part II by talking about the outputs framework, a key piece
of Falco.

Do you really need to learn about the internals of Falco in order to operate
it? The answer, as it is so often in life, is “it depends.” If your goal is simply

mailto:sgrey@oreilly.com

to deploy Falco in its default configuration and show your boss that it’s up
and working, then you’re probably fine skipping this part of the book.
However, doing so will make some things hard, and others impossible. For
example, in Parts I and IV we’ll cover:

Interpreting Falco’s output

Determining if an alert could be a false positive

Fine-tuning Falco to privilege accuracy over noise

Precisely adapting Falco to your environment
e Customizing and extending Falco

All of these tasks require you to truly understand the core concepts behind
Falco and its architecture, and that’s what we’ll help you accomplish here.

True security is never trivial. It requires an investment that goes beyond a
superficial understanding. But that investment is typically paid back in
spades, because it can make the difference in whether your software gets
compromised and your company ends up in the news for all the wrong
reasons.

Assuming we’ve convinced you, let’s get started. Figure 3-1 depicts the
main components of a typical Falco sensor deployment.

Falco [Falcosidekick |

y Slack, email, S3,
[eﬁgilﬁe]_’ [Falcoﬂ?‘?kmk] _’Elasticsearch,...
' Falco libraries 1 CloudTrails,

Kernel eBPF 4—[Plugins]4— Kubernetes
module probe audit logs, APIs,

application logs, ...

e »

System calls

Figure 3-1. The high-level architecture of a typical Falco sensor deployment

The architecture depicted in Figure 3-1 reflects the components as they are
organized at the code level in the Falcosecurity organization on GitHub. At
this level of granularity, the main components are:

Falco libraries

The Falco libraries, or “libs,” are responsible for collecting the data the
sensor will process. They also manage state and provide multiple layers
of enrichment for the collected data.

Plugins

The plugins extend the sensor with additional data sources. For
example, plugins make it possible for Falco to use AWS CloudTrail and
Kubernetes audit logs as data sources.

Falco

This is the main sensor executable, including the rule engine.

Falcosidekick

https://oreil.ly/ClRJj
https://oreil.ly/6CbQH
https://oreil.ly/9Jyi8
https://oreil.ly/2IQkj

Falcosidekick is responsible for routing the notifications and connecting
the sensor to the external world.

Of the components in Figure 3-1, Falco and the Falco libs are required and
always installed, while Falcosidekick and the plugins are optional; you can
install them based on your deployment strategy and needs.

Falco and the Falco Libraries: A Data-Flow
View

Let’s take the two most important of the components we just described, the
Falco libraries and Falco, and explore their data flows and critical modules.

As Figure 3-2 shows, one of the core sources of data is system calls. These
are captured in the kernel of the operating system by one of Falco’s two
drivers: the kernel module and the eBPF (extended Berkeley Packet Filter)

probe.

-y
Falco [Output notifications

I Falco

Rule engine

.

Iibsinsp
Libraries

Plugin data = ||hscap

Falco libraries
User
Kernel ‘ ‘
System ::aﬂs—b[KETU‘TL] [EBPF probe }Driuers

Figure 3-2. Sensor data flow and main modules

https://oreil.ly/lmOie

The collected system calls flow into the first of the Falco core libraries,
libscap, which can also receive data from the plugins and exposes a
common interface to the upper layers. Data is then passed to the other key
library, libsinsp, to be parsed and enriched. Next, the data is fed to the rule
engine for evaluation. Falco receives the output of the rule engine and emits
the resulting notifications, which can optionally go to Falcosidekick.

Pretty straightforward, right? Figure 3-3 gives further details about what
each of these modules does, and in the following sections we’ll explore
them in more depth.

[Othertnols][Falco]

T 1
* Rule language compiler
: * Rules evaluation
[Rule engme]} * Rules management
T « Inputs and outputs
« Event parsing
libsi » State engine
1Ll) « Filtering
T » Output formatting

» Capture control
P!ugfndata—}[libscap]}-Traceﬁlesﬂfw

« Initial state collection

User

Kernel ,
Kamnal « Syscall colle;tlun
System calls eBPF probe + Syscall packing

module « Efficient data transfer

Figure 3-3. Key roles of the sensor s main modules

Drivers

System calls are Falco’s original data source, and to this day they remain
the most important. Collecting system calls is at the core of Falco’s ability
to trace the behavior of processes, containers, and users in a very granular
way and with high efficiency. Reliable and efficient system call collection
needs to be performed from inside the kernel of the operating system, so it
requires a driver that runs inside the OS itself. As mentioned in the previous
section, Falco offers two such drivers: the kernel module and the eBPF
probe.

These two components offer identical functionality and are deployed in a
mutually exclusive way: if you deploy the kernel module you can’t run the
eBPF probe, and vice versa. So what distinguishes them?

The kernel module works with any version of the Linux kernel, including
older ones. Also, it requires somewhat fewer resources to run, so you
should use it when you care about Falco having the smallest possible
overhead.

The eBPF probe, on the other hand, runs only on more recent versions of
Linux, starting at kernel 4.11. Its advantage 1s that it’s safer, because its
code is strictly validated by the operating system before it is executed. This
means that even if it contains a bug, it is (in theory) guaranteed not to crash
your machine. Compared to the kernel module, it is also much better
protected from security flaws that could compromise the machine where
you run it. Therefore, in most cases, the eBPF probe is the option you
should go with. Note also that some environments—in particular, cloud-
based managed containerized environments—prevent kernel modules from
being loaded in the operating system kernel. In such environments, the
eBPF probe is your only option.

Both the kernel module and the eBPF probe are entrusted with a set of very
important tasks:

Capturing system calls

The driver’s first responsibility is capturing system calls. This happens
through a kernel facility called tracepoints and is heavily optimized to
minimize the performance impact on the monitored applications.

https://oreil.ly/tEYsq

System call packing

The driver then encodes the system call information into a transfer
buffer, using a format that the rest of the Falco stack can parse easily
and efficiently.

Zero-copy data transfer

Finally, the driver is responsible for efficiently transferring this data
from the kernel to the user level, where /libscap will receive it. We
should really call this efficiently not transferring the data, since both the
kernel module and the eBPF probe are designed around a zero-copy
architecture that maps the data buffers into user-level memory so that
libscap can access the original data without needing to copy or transfer
it.

In Chapter 4 you will learn all you need to know about drivers, including
their architecture, functionality, and usage scenarios.

Plugins

Plugins are a way to add additional data sources to Falco simply and
without the need to rebuild it. Plugins implement an interface that feeds
events into Falco, similar to what the kernel module and eBPF probe do.
However, plugins are not limited to capturing system calls: they can feed
Falco any kind of data, including logs and API events.

Falco has several powerful plugins that extend its scope. For example, the
CloudTrail plugin ingests JSON logs from AWS CloudTrail and allows
Falco to alert you when something dangerous happens in your cloud
infrastructure. Plugins can be written in any language, but there are Go and
C++ software development kits (SDKs) available that make it easier to
write them in those languages. We will talk more about plugins in Chapters
4 and 11.

libscap

The name /ibscap stands for “library for system capture,” a clear hint about
its purpose. /ibscap 1s the gateway through which the input data passes
before getting into the Falco processing pipeline. Let’s take a look at the
main things /ibscap does for us.

Managing Data Sources

The libscap library contains the logic to control both the kernel module and
the eBPF probe, including loading them, starting and stopping captures, and
reading the data they produce. It also includes the logic to load, manage,
and run plugins.

libscap 1s designed to export a generic capture source abstraction to the
upper layers of the stack. This means that no matter how you collect data
(kernel module, eBPF probe, a plugin), programs that use /ibscap will have
a consistent way to enumerate and control data sources, start and stop
captures, and receive captured events, and you won’t have to worry about
the nuances of interfacing with these disparate input sources.

Supporting Trace Files

Another extremely important piece of functionality in /ibscap is support for
trace files. If you’ve ever created or opened a PCAP file with Wireshark or
tcpdump, we’re sure you understand how useful (and powerful!) the
concept of trace files is. If not, allow us to explain.

In addition to capturing and decoding network traftic, protocol analyzers
(like Wireshark and tcpdump) let you “dump” the captured network packets
into a trace file. The trace file contains a copy of each packet, so that later
you can open it to analyze the activity of that network segment. You can
also share it with other people or filter its contents to isolate relevant
information.

Trace files are often referred to as PCAP files, a name that originates from
the .pcap file format used to encode the data inside them (an open,

standardized format understood by every networking tool in the universe).
This enables an endless list of the capture now, analyze later workflows that
are critical in computer networks.

Many Falco users don’t realize that Falco supports trace files using the
.pcap format. This feature is extremely powerful and should definitely be
part of your arsenal as you gain more experience. For example, trace files
are invaluable when it comes to writing new rules.

We’ll talk extensively about how to leverage trace files, for example in
Chapters 4 and 13, but for now let’s whet your appetite by teaching you
how to create a trace file and have Falco read it, in two simple steps. In
order to do that, we need to introduce a command-line tool called sysdig.
You’ll learn more about sysdig in Chapter 4, but for the moment we’ll just
use it as a simple trace file generator.

Step 1: Create the trace file

Install sysdig on your Linux host by following the installation instructions.
After finishing the installation, run the following on your command line,
which instructs sysdig to capture all of the system calls generated by the
host and write them to a file called testfile.scap:

$ sudo sysdig -w testfile.scap

Wait a few seconds to make sure your machine is working on it, then press
Ctrl-C to stop sysdig.

Now you have a snapshot of a few seconds’ worth of your host’s activity.
Let’s take a look at what it contains:

sysdig -r testfile.scap

17:41:13.628568857 0 prlcp (4358)
17:41:13.628573305 0 prlcp (4358)
17:41:13.628588359 0 prlcp (4358)
17:41:13.609136030 3 gmain (2935)
17:41:13.609146818 3 gmain (2935)
17:41:13.609149203 3 gmain (2935)
17:41:13.609151765 3 gmain (2935)

write res=0 data=.N;.n...

write fd=6(<p>pipe:[43606]) size=1
write res=1 data=.

poll res=0 fds=

write fd=4(<e>) size=8

write res=8 data=........

read fd=7(<i>) size=4096

~N~No v h WN R W»n
wwwwoo

vV ANV AN ANV A

https://oreil.ly/Rmkxr

8 17:41:13.609153301 3 gmain (2935) < read res=-11(EAGAIN) data=
9 17:41:13.626956525 0 Xorg (3214) < epoll_wait res=1

10 17:41:
11 17:41:
12 17:41:
13 17:41:
data=....
14 17:41:
size=32

15 17:41:

13.
13.
13.
13.

626964759 0 Xorg (3214) > setitimer

626966955 0 Xorg (3214) < setitimer

626969972 0 Xorg (3214) > recvmsg fd=42(<u>@/tmp/.X11-unix/X0)
626976118 0 Xorg (3214) < recvmsg res=28 size=28
................. a... tuple=NULL

.626992585 0 Xorg (3214) > writev fd=42(<u>@/tmp/.X11-unix/X0)

.627013409 0 Xorg (3214) < writev res=32

ooooooooooooooooooooooooo

We’ll go through the format of this output in detail later, but you can
probably tell that this is a bunch of background input/output (I/O) activity
performed by system tools like Xorg, gmain, and prlcp, which are running
on this machine while it’s idle.

Step 2: Process the trace file with Falco

Think of the trace file as taking us back in time: you took a snapshot of
your host at a specific point in time, and now you can trace the system calls
generated on the host around that time, observing every process in detail.
Processing the trace file with Falco is easy and lets you see quickly if any
security violations happened during that time. Here’s a sample of its output:

$ falco -e testfile.scap
Wed Sep 29 18:04:00 2021: Falco version 0.30.0
Wed Sep 29 18:04:00 2021: Falco initialized with configuration file
/etc/falco/falco.yaml
Wed Sep 29 18:04:00 2021: Loading rules from file /etc/falco/falco_rules.yaml:
Wed Sep 29 18:04:00 2021: Reading system call events from file: testfile.scap
Events detected: 0
Rule counts by severity:
Triggered rules by rule name:
Syscall event drop monitoring:
- event drop detected: 0 occurrences
- num times actions taken: 0

Fortunately, it looks like we’re safe. This consistent, back-in-time way of
running Falco is useful when writing or unit-testing rules. We’ll talk more
about it when we deep dive into rules in Chapter 13.

Collecting System State

System state collection is an important task that’s specifically related to
capturing system calls. The kernel module and the eBPF probe produce raw
system calls, which lack some important context Falco needs.

Let’s take a look at an example. A very common system call is read, which,
as the name implies, reads a buffer of data from a file descriptor. Here is the
prototype of read:

ssize_t read(int fd, voild *buf, size_t count);

It has three inputs: the numeric file descriptor identifier, a buffer to fill, and
the buffer size. It returns the amount of data that was written in the buffer.

A file descriptor 1s like the ID of an object inside the operating system
kernel: it can indicate a file, a network connection (specifically, a socket),
the endpoint of a pipe, a mutex (used for process synchronization), a timer,
or several other types of objects.

Knowing the file descriptor number is not very useful when crafting a Falco
rule. As users, we prefer to think about a file or directory name, or maybe a
connection’s IP addresses and ports, than a file descriptor number. /ibscap
helps us do that. When Falco starts, /ibscap fetches a bunch of data from a
diverse set of sources within the operating system (for example, the /proc
Linux filesystem). It uses this data to construct a set of tables that can be
used to resolve cryptic numbers—file descriptors, process IDs, and so forth
—into logical entities and their details, which are much easier for humans
to use.

This functionality is part of why Falco’s syntax is so much more expressive
and usable than that of most comparable tools. One theme that you will be
hearing often in this book is that granular data is useless without context.
This gives you a hint of what that means. Next we’ll dive into the other
important Falco library: libsinsp.

libsinsp

libsinsp stands for “library for system inspection.” This library taps into the
stream of data /ibscap produces, enriches it, and provides a number of
higher-level primitives to work with it. Let’s start by exploring its most
important functionality, the state engine.

State Engine

As we noted in the previous section, when Falco starts libscap constructs a
set of tables to convert low-level identifiers, like file descriptor numbers,
into high-level, actionable information, like IP addresses and filenames.
This is great, but what if a program opens a file after Falco starts? For
example, a very common system call in Unix is open, which takes two
input arguments, the filename and some flags, and returns a file descriptor
identifying the newly opened file:

int open(const char *pathname, int flags);

In practice, open, like many other system calls, creates a new file
descriptor, effectively changing the state of the process that called it. If a
process invokes open after Falco has been launched, its new file descriptor
will not be part of the state table and Falco won’t know what to do with that
descriptor. However, consider this: open is a system call. More generally,
system calls are always used to create, destroy, or modify file descriptors.
Recall, too, that the Falco libs capture al/ system calls from every process.

libsinsp, in particular, has logic to inspect every state-changing system call
and, based on the system call arguments, update the state tables. In other
words, it tracks the activity of the whole machine to keep the state in sync
with the underlying operating system. Further, it does so in a way that
accurately supports containers. /ibsinsp keeps this constantly updated
information in a hierarchical structure. This structure (Figure 3-4) starts
with a process table, each entry of which contains a file descriptor table,
among other information.

Process table

Processinfo
name=cat
user=john
container=41b5a53f6fdd

File descriptors

FDinfo

type=file
|) | name=/etc/passwd
flags=0xF4B3

Figure 3-4. The libsinsp state hierarchy

These accurate, constantly updated state tables are at the core of Falco’s
data enrichment, which in turn is a key building block of the rule engine.

Event Parsing

The state engine requires a substantial amount of logic to understand system
calls and parse their arguments. This is what libsinsp’s event parser does.
State tracking leverages event parsing, but it’s used for other purposes as
well. For example, it extracts useful arguments from system calls or other
data sources, making them available to the rule engine. It also collates and
reconstructs buffers that can be spread across multiple collected messages,
making it easier to decode their content from Falco rules.

Filtering

Filtering is one of the most important concepts in Falco, and it’s fully
implemented in /ibsinsp. A filter 1s a Boolean expression that ties together
multiple checks, each of which compares a filter field with a constant value.
The importance of filters is obvious when we look at rules. (Indeed, it’s so
important that we dedicate all of Chapter 6 to it.) Let’s take the simple rule
shown here:

- rule: shell _in_container
desc: shell opened inside a container
condition: container.id != host and proc.name = bash
output: shell in a container (user=%user.name container_id=%container.id)
priority: WARNING

The condition section of the rule is a libsinsp filter. The condition in our
example checks that the container ID is not host and that the name of the
process is bash. Every captured system call that meets both criteria will
trigger the rule.

libsinsp 1is responsible for defining and implementing system call-related
filter fields. It also contains the engine that evaluates filters and tells us if
the rule should trigger, so it’s not an exaggeration to say that /ibsinsp is the
heart of Falco.

Output Formatting

If we take another look at the example rule, we can see that the output
section makes use of a syntax similar to that of the condition section:

output: shell in a container (user=%user.name container_id=%container.id)

Output 1s what Falco prints when the rule triggers—and yes, you can use
filter fields in this section (the same fields that you can use in the
condition section) by prepending the % character to the field names.
libsinsp has logic to resolve these fields and create the final output string.
What’s nice is that if you become an expert at writing condition filters, you
will also have mastered output strings!

One More Thing About libsinsp

By now you can probably see that a lot of Falco’s logic is in /ibsinsp. That’s
deliberate. Falco’s developers recognized the value (and elegance) of its
data collection stack and realized it could be the base for many other tools.
That’s precisely why libsinsp exists. It sits on top of the powerful Falco
collection stack (which includes the drivers, plugins, and /ibscap) and adds
the most important pieces of the Falco logic in a way that makes them
reusable. What’s more, /ibsinsp includes all you need to collect security and
forensics data from containers, virtual machines, Linux hosts, and cloud
infrastructure. It’s stable, efficient, and well documented.

Several other open source and commercial tools have been built on top of
libsinsp. 1f you would like to write one, or if you are just curious and want
to learn more, we recommend you start at the falcosecurit)/libs repository.

Rule Engine

The Falco rule engine is the component you interact with when you run
Falco. Here are some of the things that the rule engine is responsible for:

e Loading Falco rules files
e Parsing the rules in a file

» Applying local customizations (such as appends and overrides) to rules
based on local rules files

o Using libsinsp to compile the condition and output of each rule

e Performing the appropriate action, including emitting the output, when
a rule triggers

Thanks to the power of /ibscap and libsinsp, the rule engine is simple and
relatively independent from the rest of the stack.

Conclusion

https://oreil.ly/Cp2Nt

Now you know what’s inside Falco and how its components relate to each
other—you’re well on your way to mastering it! In the next chapters we’ll

dive deeper into some of the components and concepts that this chapter
introduced.

Chapter 4. Data Sources

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the
authors’ raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the fourth chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at sgrey@oreilly.com.

In this chapter we’ll take a deep dive into the kernel of the operating system
and Falco’s data collection stack. You’ll learn how Falco captures the
different types of events that feed its rule engine, how its data collection
process compares to alternative approaches, and why it was built the way it
is. You’ll get to understand the details well enough that you will be able to
pick and deploy the right drivers and plugins for your needs by the end of
this chapter.

The first order of business is understanding what data sources you can use
in Falco. Falco’s data sources can be grouped into two main families:
system calls and plugins. System calls are Falco’s original data source. They
come from the kernel of the operating system and offer visibility into the
activities of processes, containers, virtual machines, and hosts. Falco uses
them to protect workloads and applications. The second family of data
sources, plugins, is relatively new: support was added in 2022. Plugins
connect various types of inputs to Falco, such as cloud logs and APIs.

mailto:sgrey@oreilly.com

Falco previously supported Kubernetes audit logs as a third, separate source
type; starting from Falco 0.32, however, this data source has been
reimplemented as a plugin, so we won’t cover it in this chapter.

System Calls

As we’ve stated several times already, system calls are a key source of data
for Falco and one of the ingredients that make it unique. But what exactly is
a system call? Let’s start with a high-level definition, courtesy of Wikipedia:

In computing, a system call (commonly abbreviated to syscall) is the
programmatic way in which a computer program requests a service from
the kernel of the operating system on which it is executed. This may
include hardware-related services (for example, accessing a hard disk
drive or accessing the device's camera), creation and execution of new
processes, and communication with integral kernel services such as
process scheduling.

Let’s unpack this. At the highest level of abstraction, a computer consists of
a bunch of hardware that runs a bunch of software. In modern computing,
however, it’s extremely unusual for a program to run directly on the
hardware. Instead, in the vast majority of cases programs run on top of an
operating system. Falco’s drivers focus specifically on the operating system
powering the cloud and the modern data center: Linux.

An operating system is a piece of software designed to conduct and support
the execution of other software. Among many other things, the OS takes
care of:

e Scheduling processes

e Managing memory

Mediating hardware access

Implementing network connectivity

Handling concurrency

https://oreil.ly/pbS0B

Clearly, the vast majority of this functionality needs to be exposed to the
programs that are running on top of the OS, so that they can do something
useful. And clearly, the best way for a piece of software to expose
functionality is to offer an application programming interface (API): a set
of functions that client programs can call. This is what system calls almost
are: APIs to interact with the operating system.

Wait, why almost?

Well, the operating system is a unique piece of software, and you can’t just
call it like you would a library. The OS runs in a separate execution mode,
called privileged mode, that’s isolated from user mode, which is the context
used for executing regular processes (that 1s, running programs). This
separation makes calling the OS more complicated. With some CPUs, you
invoke a system call by triggering an interrupt. With most modern CPUs,
however, you need to use a specific CPU instruction. If we exclude this
additional level of complexity, it 1s fair to say that system calls are APIs to
access operating system functionality. There are lots of them, each with their
own input arguments and return value.

Every program, with no exceptions, makes extensive and constant use of the
system call interface for anything that is not pure computation: reading
input, generating output, accessing the disk, communicating on the network,
running a new program, and so on. This means, as you can imagine, that
observing system calls gives a very detailed picture of what each process
does.

Operating system developers have long treated the system call interface as a
stable API. This means that you can expect it to stay the same even if,
inside, the kernel changes dramatically. This is important because it
guarantees consistency across time and execution environments, making the
system call API an ideal choice for collecting reliable security signals. Falco
rules, for example, can reference specific system calls and assume that using
them will work on any Linux distribution.

Examples

Linux offers many system calls—over 300 of them. Going over all of them
would be next to impossible and very boring, so we’ll spare you that.
However, we do want to give you an idea of the kinds of system calls that
are available.

Table 4-1 includes some of the system call categories that are most relevant
for a security tool like Falco. For each category, the table includes examples
of representative system calls. You can find more information on each by
entering man 2 X, where X is the system call name, in a Linux terminal or
in your browser’s search bar.

N 39 < v

X+

~

> R N T G C N

SyStem

O VU ~~ O T

N Q0 & 0~

R~

Category

File I/O

Network

Interprocess
communication

Process
management

Memory
management

User management

System

Examples

open, creat, close, read, write, toctl, link, unlink, chdir, chmod, stat,
seek, mount, rename, mkdir, rmdir

socket, bind, connect, listen, accept, sendto, recvfrom, getsockopt,
setsockopt, shutdown

pipe, futex, inotify_add_watch, eventfd, semop, semget, semctl, msgctl

clone, execve, fork, nice, kill, prctl, exit, setrlimit, setpriority,
capset

brk, mmap, mprotect, mlock, madvise
setuid, getuid, setgid, getgid

sethostname, setdomainname, reboot, syslog, uname, swapoff,
init_module, delete_module

TIP

If you are interested in taking a look at the full list of Linux system calls, type man

syscalls into a Linux terminal or a search engine. This will show the official Linux

manual page, which includes a comprehensive list of system calls with hyperlinks to take
a deeper look at many of them. In addition, software engineer Filippo Valsorda offers a
nicely organized and searchable list on his personal home page.

Observing System Calls

https://oreil.ly/P12lw

Given how crucial system calls are for Falco and for runtime security in
general, it’s important that you learn how to capture, observe, and interpret
them. This is a valuable skill that you will find useful in many situations.
We’re going to show you two different tools you can use for this purpose:
strace and sysdig.

strace

strace is a tool that you can expect to find on pretty much every machine
running a Unix-compatible operating system. In its simplest form, you use it
to run a program, and it will print every system call issued by the program
to standard error. In other words, add strace to the beginning of an
arbitrary command line and you will see all of the system calls that
command line generates:

$ strace echo hello world

execve("/bin/echo", ["echo", "hello", "world"], 0x7ffc87eed490 /* 32 vars */) =
0
brk(NULL) 0x558ba22bf000
access("/etc/1d.so.nohwcap", F_OK) -1 ENOENT (No such file or directory)
access("/etc/1ld.so.preload", R_OK) -1 ENOENT (No such file or directory)
openat(AT_FDCWD, "/etc/ld.so.cache", O _RDONLY|O CLOEXEC) = 3

fstat(3, {st_mode=S_IFREG|0644, st size=121726, ...}) = 0

mmap(NULL, 121726, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7f289009c000

close(3) =0

access("/etc/1d.so.nohwcap", F_OK) -1 ENOENT (No such file or directory)
openat(AT_FDCWD, "/1ib/x86_64-1inux-gnu/libc.so0.6", O _RDONLY|O CLOEXEC) = 3
read(3, "\177ELF\2\1\1\3\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0\20\35\2\0\0\0\0\0"...,
832) = 832

fstat(3, {st_mode=S_IFREG|0755, st_size=2030928, ...}) =0

mmap(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =
0x7f289009a000

mmap(NULL, 4131552, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) =
0x7f288faab000

mprotect(Ox7f288fc87000, 2097152, PROT_NONE) = 0

mmap(0x7f288fe87000, 24576, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x1e7000) = 0x7f288fe87000
mmap(0x7f288fe8d00OO, 15072, PROT_READ|PROT_WRITE,

MAP_PRIVATE |MAP_FIXED|MAP_ANONYMOUS, -1, Q) = 0x7f288fe8d000

close(3) =0

arch_prctl(ARCH_SET_FS, 0x7f289009b540) = 0

mprotect(0Ox7f288fe87000, 16384, PROT_READ) = 0

mprotect(0Ox558ba2028000, 4096, PROT_READ) = 0

mprotect(0x7f28900bat00d, 4096, PROT_READ) = 0

munmap(0x7f289009c000, 121726) =0
brk(NULL) = 0x558ba22bf000
brk(6x558ba22e06000) = 0x558ba22e0000

openat(AT_FDCWD, "/usr/lib/locale/locale-archive"”, O_RDONLY|O_CLOEXEC) = 3
fstat(3, {st_mode=S_IFREG|0644, st_size=3004224, ...}) =0

mmap(NULL, 3004224, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7f288f7c2000
close(3) =0

fstat(1, {st_mode=S_IFCHR|0620, st_rdev=makedev(136, 2), ...}) =0
write(l, "hello world\n", 1l2hello world

) = 12

close(1) =0
close(2) =0
exit_group(0) =72

+++ exited with 0 +++

Note how strace’s output mimics C syntax and looks like a stream of
function invocations, with the addition of the return value after the = symbol
at the end of each line. For example, take a look at the write syscall (in
bold) that outputs the “hello world” string to standard output (file descriptor
1). It returns the value 12, which is the number of bytes that have been
successfully written. Note how the string “hello world” is printed to
standard output before the write system call returns and strace prints its
return value on the screen.

A second way to use strace is pointing it to a running process by specifying
the process ID (PID) on the command line:

$ sudo strace -p pidof vi®

strace: Process 16472 attached

select(1, [0], [1, [0], NULL) 1 (in [0])
read(0, "\r", 250) =1
select(1, [0], [1, [0], {tv_sec=0, tv_usec=0})
select(1, [0], [1, [0], {tv_sec=0, tv_usec=0})
write(1, "\7", 1) =1
select(1, [0], [1, [0], {tv_sec=4, tv_usec=0})
select(1, [0], [1, [0], NULL

AC

strace: Process 16472 detached

<detached ...>

0 (Timeout)
0 (Timeout)

0 (Timeout)

strace has some pros and some cons. It’s broadly supported, so either it’s
already available or it’s an easy package install away. It’s also simple to use
and ideal when you need to inspect a single process, which makes it perfect
for debugging use cases.

As for disadvantages, strace instruments individual processes, which makes
it unsuitable for inspecting the activity of the whole system, or when you
don’t have a specific process to start from. Further, strace is based on ptrace
for system call collection, which makes it very slow and unsuitable for use
in production environments. You should expect a process to slow down
substantially (sometimes by orders of magnitude) when you attach strace to
it.

sysdig

We introduced sysdig in Chapter 3’s discussion of trace files. sysdig is more
sophisticated than strace and includes several advanced features. While this
can make it a bit harder to use, the good news is that sysdig shares Falco’s
data model, output format, and filtering syntax—so you can use a lot of
what you learn about Falco in sysdig, and vice versa.

The first thing to keep in mind is that you don’t point sysdig to an individual
process like you do with strace. Instead, you just run it and it will capture
every system call invoked on the machine, inside or outside containers:

sudo sysdig
17:41:13.628568857 0 prlcp (4358)
17:41:13.628573305 0 prlcp (4358)

0 write res=0 data=.N;.n...

0
17:41:13.609136030 3 gmain (2935)

3

3

0

write fd=6(<p>pipe:[43606]) size=1
poll res=0 fds=

17:41:13.609146818 3 gmain (2935) > write fd=4(<e>) size=8
17:41:13.609149203 3 gmain (2935) < write res=8 data=........

9 17:41:13.626956525 0 Xorg (3214) < epoll_wait res=1

10 17:41:13.626964759 0 Xorg (3214) > setitimer

11 17:41:13.626966955 0 Xorg (3214) < setitimer

AU AN R WO

AV ANV A

Usually this is too noisy and not very useful, so you can restrict what sysdig
shows you by using filters. sysdig accepts the same filtering syntax as Falco
(which, incidentally, makes it a great tool to test and troubleshoot Falco

rules). Here’s an example where we restrict sysdig to capturing system calls
for processes named “cat”:

$ sudo sysdig proc.name=cat & cat /etc/hosts

47190 14:40:39.913809700 12 cat (377163.377163) < execve res=0 exe=cat
args=/etc/hosts. tid=377163(cat) pid=377163(cat) ptid=5860(zsh) cwd=
fdlimit=1024 pgft_maj=0 pgft_min=60 vm_size=424 vm_rss=4 vm_swap=0 comm=cat
cgroups=cpuset=/user.slice.cpu=/user.slice.cpuacct=/.10=/user.slice.memory=/use
r.slic... env=SYSTEMD EXEC_PID=3558.GJS_DEBUG_TOPICS=JS ERROR;JS
MANAGER=1local/... tty=34817

LOG.SESSION_
47194 14:40:
47196 14:40:

vm_size=424

47205 14:40:
47206 14:40:
47207 14:40:
47208 14:40:

39.913846153 12 cat
39.913846951 12 cat
vm_rss=4 vm_swap=0
39.913880404 12 cat
39.913880871 12 cat
39.913896493 12 cat
39.913900922 12 cat

name=/etc/1ld.so.preload

47209 14:40:

39.913903872 12 cat

(377163.
(377163.

(377163.
(377163.
(377163.
(377163.

(377163.

pgid=377163(cat) loginuid=1000 flags=0

377163) >
377163) <

377163)
377163)
377163)
377163)

AV ANV

377163) >

brk addr=0
brk res=55956998C000

arch_prctl

arch_prctl

access mode=4(R_0K)
access res=-2(ENOENT)

openat dirfd=-100(AT_FDCWD)

name=/etc/ld.so.cache flags=4097(0_RDONLY|O_CLOEXEC) mode=0

47210 14:40:39.913914652 12 cat (377163.377163) < openat
fd=3(<f>/etc/1d.so.cache) dirfd=-100(AT_FDCWD) name=/etc/1ld.so.cache
flags=4097(0_RDONLY|O_CLOEXEC) mode=0 dev=803

This output requires a little more explanation than strace’s. The fields sysdig

prints are:

¢ Incremental event number

e Event timestamp

e CPUID

e Command name

e Process ID and thread ID (TID), separated by a dot

e Event direction (> means enter, while < means exir)

e Event type (for our purposes, this is the system call name)

e System call arguments

Unlike strace, sysdig prints two lines for each system call: the enter line is
generated when the system call starts and the exit line is printed when the
system call returns. This approach works well if you need to identify how
long a system call took to run or pinpoint a process that is stuck in a system
call.

Also note that, by default, sysdig prints thread IDs in addition to process
IDs. Threads are the core execution unit for the operating system, and thus
for sysdig as well. Multiple threads can exist within the same process or
command and share resources, such as memory. The TID is the basic
identifier to follow when tracking execution activity in your machine. You
do that by just looking at the TID number, or by filtering out the noise with
a command line like this one:

$ sysdig thread.tid=1234

which will only preserve the execution flow for thread 1234.

Threads live inside processes, which are identified by a process ID. A lot of
the processes running on an average Linux box are single-threaded, and in
that case thread. tid is the same as proc.pid. Filtering by proc.pid is
useful to observe how threads interact with each other inside a process.

Trace files

As you learned in Chapter 3, you can instruct sysdig to save the system calls
it captures to a trace file, like so:

$ sudo sysdig -w testfile.scap

You will likely want to use a filter to keep the file size under control. For
example:

$ sudo sysdig -w testfile.scap proc.name=cat

You can also use filters when reading trace files:

$ sysdig -r testfile.scap proc.name=cat

sysdig’s filters are important enough that we will devote a full chapter
(Chapter 6) to them.

We recommend you play with sysdig and explore the activity of common
programs in Linux. This will be helpful later, when creating or interpreting
Falco rules.

Capturing System Calls

All right, system calls are cool and we need to capture them. So what’s the
best way to do it?

Earlier in this chapter, we described how system calls involve transitioning
the execution flow from a running process to the kernel of the operating
system. Intuitively, and as shown in Figure 4-1, there are two places where
system calls can be captured: in the running process or the operating system
kernel.

Process
1

/-
3

Figure 4-1. System call capture options

Capturing system calls in a running process typically involves modifying
either the process or some of its libraries with some kind of instrumentation.
The fact that most programs in Linux use the C standard library, also known
as glibc, to execute system calls makes instrumenting it quite appealing. As
a consequence, there are abundant tools and frameworks to modify glibc
(and other system libraries) for instrumentation purposes. These techniques
can be static, changing the library’s source code and recompiling it, or
dynamic, finding its location in the address space of the target process and
inserting hooks in it.

NOTE

Another method to capture system calls without instrumenting the OS kernel involves
using the operating system’s debugging facilities. For example, strace uses a facility
called ptrace,! which is at the base of tools like the GNU debugger (gdb).

The second option involves intercepting the system call execution after it
has transitioned to the operating system. This requires running some code in
the OS kernel itself. It tends to be more delicate and riskier, because running
code in the kernel requires elevated privileges. Anything running in the
kernel has potential control of the machine, its processes, its users, and its
hardware. Therefore, a bug in anything that runs inside the kernel can cause
major security risks, data corruption, or, in some cases, even a machine
crash. This is why many security tools pick instrumentation option 1 and
capture system calls at the user level, inside the process.

Falco does the opposite: it sits squarely on the kernel instrumentation side.
The rationale behind this choice can be summarized in three words:
accuracy, performance, and scalability. Let’s explore each in turn.

Accuracy

User-level instrumentation techniques—in particular, those that work at the
glibc level—have a couple of major problems. First, a motivated attacker
can evade them by, well, not using g/ibc! You don’t have to use a library to
issue system calls, and attackers can easily craft a simple sequence of CPU
instructions instead, completely bypassing the glibc instrumentation. Not
good.

Even worse, there are major categories of software that just don’t load glibc
at all. For example, statically linked C programs, very common in
containers, import glibc functions at compile time and embed them in their
executables. With these programs, you don’t have the option to replace or
modify the library. The same goes for programs written in Go, which has its
own statically linked system call interface library.

Kernel-level capture doesn’t suffer from these limitations. It supports any
language, any stack, and any framework, because system call collection
happens at a level below all of the libraries and abstraction layers. This
means that kernel-level instrumentation is much harder for attackers to
evade.

Performance

Some user-level capture techniques, such as using ptrace, have significant
overhead because they generate a high number of context switches. Every
single system call needs to be uniquely delivered to a separate process,
which requires the execution to ping-pong between processes. This is very,
very slow, to the point that it becomes an impediment to using such
techniques in production, where such a substantial impact on the
instrumented processes is not acceptable.

It’s true that glibc-based capture can be more efficient, but it still introduces
high overhead for basic operations like timestamping events. Kernel-level
capture, by contrast, requires zero context switches and can collect all of the
necessary context, like timestamps, from within the kernel. This makes it
much faster than any other technique, and thus the most suitable for
production.

Scalability

As the name implies, process-level capture requires “doing something” for
every single process. What that something is can vary, but it still introduces
an overhead that is proportional to the number of observed processes. That’s
not the case with kernel-level instrumentation. Take a look at Figure 4-2.

Process Process Process

OS kernel

Figure 4-2. System call capture scalability, process-level versus kernel

If you insert kernel instrumentation in the right place, it is possible to have
one single instrumentation point (labeled 2 in Figure 4-2), no matter how
many processes are running. This ensures not only maximum efficiency but
also the certainty that you will never miss anything, because no process
escapes kernel-level capture.

So What About Stability and Security?

We mentioned that kernel-level instrumentation is more delicate, because a
bug can cause serious problems. You might wonder, “Am I taking additional
risk by choosing a tool like Falco, which is based on kernel instrumentation,
instead of a product based on user-level instrumentation?”

Not really. First of all, kernel-level instrumentation benefits from well-
documented, stable hooking interfaces, while approaches like glibc-based
capture are less clean and intrinsically riskier. They cannot crash the

machine, but they can absolutely crash the instrumented process, with
results that are typically bad. In addition to that, technologies like eBPF
greatly reduce the risk involved in running code in the kernel, making
kernel-level instrumentation viable even for risk-averse users.

Kernel-Level Instrumentation Approaches

We hope we’ve convinced you that, whenever it’s available, kernel
instrumentation is the way to go for runtime security. The question now
becomes, what is the best mechanism to implement it? Among the different
available approaches, two are relevant for a tool like Falco: kernel modules
or eBPF probes. Let’s take a look at each of these approaches.

Kernel modules

Loadable kernel modules are pieces of code that can be loaded into the
kernel at runtime. Historically, modules have been heavily used in Linux
(and many other operating systems) to make the kernel extensible, efficient,
and smaller.

Kernel modules extend the kernel’s functionality without the need to reboot
the system. They are typically used to implement device drivers, network
protocols, and filesystems. Kernel modules are written in C and are
compiled for the specific kernel inside which they will run. In other words,
it’s not possible to compile a module on one machine and then use it on
another one (unless they have exactly the same kernel). Kernel modules can
also be unloaded when the user doesn’t need them anymore, to save
memory.

Linux has supported kernel modules for a very long time, so they work even
with very old versions of Linux. They also have extensive access to the
kernel, which means there are very few restrictions on what they can do.
That makes them a great choice to collect the detailed information required
by a runtime security tool like Falco. Since they are written in C, kernel
modules are also very efficient, and therefore a great option when
performance 1s important.

If you want to see the list of modules that are loaded in your Linux box, use
this command:

$ sudo lsmod

eBPF

As mentioned in Chapter 1, eBPF is the “next generation” of the Berkeley
Packet Filter (BPF). BPF was designed in 1992 for network packet filtering
with BSD operating systems, and it is still used today by tools like
Wireshark. BPF’s innovation was the ability to execute arbitrary code in the
kernel of the operating system. Since such code has more or less unlimited
privileges on the machine, however, this is potentially risky and must be
done with care.

Figure 4-3 shows how BPF safely runs arbitrary packet filters in the kernel.

Wireshark

7

Filter

'libpcap

Compiler

User
Kernel

Verifier q—b[Fllterlng q

Figure 4-3. BPF filter deployment steps

.

Let’s take a look at the steps depicted here:
1. The user inputs a filter in a program like Wireshark (e.g., port 80).

2. The filter is fed to a compiler, which converts it into bytecode for a
virtual machine. This is conceptually similar to compiling a Java
program, but both the program and the virtual machine (VM)
instruction set are much simpler when using BPF. Here, for example, is
what our port 80 filter becomes after being compiled:

(000) 1ldh [12]

(001) jeq #0x86dd it 2 jf 10
(602) 1db [20]

(003) jeq #0x84 jt 6 jf 4

(004) jeq #0x6 jt 6 jf 5

(005) jeq #0x11 it 6 if 23
(606) 1dh [54]

(007) jeq #0x50 jt 22 jf 8

(008) 1ldh [56]

(009) jeq #OX50 jt 22 jf 23
(010) jeq #0x800 jt 11 jf 23
(011) db [23]

(012) jeq #0x84 jt 15 jf 13
(013) jeq #OX6 jt 15 jf 14
(014) jeq #0x11 jt 15 jf 23
(015) 1dh [20]

(016) jset #ox1fff jt 23 jf 17
(017) 1ldxb 4*([14]8&0xf)

(018) 1dh [x + 14]

(019) jeq #0x50 jt 22 jf 20
(620) 1dh [x + 16]

(021) jeq #OX50 jt 22 jf 23
(022) ret #262144

(023) ret #0

3. To prevent a compiled filter from doing damage, it is analyzed by a
verifier before being injected into the kernel. The verifier examines the
bytecode and determines if the filter has dangerous attributes (for
example, infinite loops that would cause the filter to never return,
consuming a lot of kernel CPU).

4. If the filter code is not safe, the verifier rejects it, returns an error to the
user, and stops the loading process. If the verifier is happy, the
bytecode is delivered to the virtual machine, which runs it against
every incoming packet.

eBPF is a more recent (and much more capable) version of BPF, added to
Linux in 2014 and first included with kernel version 3.18. eBPF takes BPF’s
concepts to new levels, delivering more efficiency and taking advantage of
newer hardware. Most importantly, with hooks throughout the kernel, eBPF
enables use cases that go beyond simple packet filtering, such as tracing,
performance analysis, debugging, and security. It’s essentially a general-
purpose code execution VM that guarantees the programs it runs won’t
cause damage.

Here are some of the improvements that eBPF introduces over classic BPF:

A more advanced instruction set, which means eBPF can run much
more sophisticated programs.

A just-in-time (JIT) compiler. While classic BPF was interpreted, eBPF
programs, after being validated, are converted into native CPU
instructions. This means they run much faster, at close to native CPU
speeds.

The ability to write real C programs instead of just simple packet
filters.

A mature set of libraries that let you control eBPF from languages like
Go.

The ability to run subprograms and helper functions.

Safe access to several kernel objects. eBPF programs can safely “peek”
into kernel structures to collect information and context, which are gold
for tools like Falco.

The concept of maps, memory areas that can be used to exchange data
with the user level efficiently and easily.

A much more sophisticated verifier, which lets eBPF programs do
more while preserving their safety.

The ability to run in many more places in the kernel than the network
stack, using facilities like tracepoints, kprobes, uprobes, Linux Security

Modules hooks, and Userland Statically Defined Tracing (USDT).

eBPF is evolving quickly and is rapidly becoming the standard way to
extend the Linux kernel. eBPF scripts are flexible and safe and run
extremely fast, making them perfect for capturing runtime activity.

The Falco Drivers

Falco offers two different driver implementations that implement both the
approaches we just described: a kernel module and an eBPF probe. The two
implementations have the exact same functionality and are interchangeable
when using Falco. Therefore, we can describe how they work without
focusing on a specific one.

The high-level capture flow is shown in Figure 4-4.

r ™

[Process] [Process]

open() connect()
User

Kernel

Tracepoint

Driver

Syscall execution
Figure 4-4. The driver s capture flow

The approach used by the Falco drivers to capture a system call involves
three main steps, labeled in the figure:

1. A kernel facility called a tracepoint intercepts the execution of the
system call. The tracepoint makes it possible to insert a hook at a
specific place in the operating system kernel, so that a callback
function will be called every time kernel execution reaches that point.
(For more information, see the article “Using the Linux Kernel
Tracepoints” by Mathieu Desnoyer.) The Falco drivers install two
tracepoints for system calls: one where system calls enter the kernel,
and another one where they exit the kernel and give control back to the
caller process.

2. While in the tracepoint callback, the driver “packs” the system call
arguments into a shared memory buffer. During this phase, the system
call is also timestamped and additional context is collected from the
operating system (for example, the thread ID, or the connection details
for some socket syscalls). This phase needs to be super-efficient,
because the system call cannot be executed until the driver’s tracepoint
callback returns.

3. The shared buffer now contains the system call data, and Falco can
access it directly through /ibscap (introduced in Chapter 3). No data is
copied during this phase, which minimizes CPU utilization while
optimizing cache coherency.

There are a few things to keep in mind with regard to system call capture in
Falco. The first one is that the way system calls are packed in the buffer is
flexible and doesn’t necessarily reflect the arguments of the original calls. In
some cases, the driver skips unneeded arguments to maximize performance.
In other cases, the driver adds fields that contain state, useful context, or
additional information. For example, a clone event in Falco contains many
fields that add information about the newly created process, like the
environment variables.

The second thing to keep in mind is that, even if system calls are by far the
most important sources of data that the drivers capture, they are not the only
ones. Using tracepoints, the drivers hook into other places in the kernel, like

https://oreil.ly/5ulP5

the scheduler, to capture context switches and signal deliveries. Take a look
at this command:

sysdig evt.type=switch

This line of code displays events captured through the context switch
tracepoint.

Which Driver Should You Use?

If you’re not sure which driver you should use, here are some simple
guidelines:

e Use the kernel module when you have an I/O-intensive workload and
you care about keeping the instrumentation overhead as low as
possible. The kernel module has lower overhead than the eBPF probe,
and on machines that generate a high number of system calls it will
have less of a performance impact on running processes. It’s not easy
to estimate how much better the kernel module will perform, since this
depends on how many system calls a process is making, but expect the
difference to be noticeable with disk- or network-intensive workloads
that generate many system calls every second.

e You should also use the kernel module when you need to support a
kernel older than Linux version 4.12.

e Use the eBPF probe in all other situations.

That’s it!

Capturing System Calls Within Containers

The beauty of tracepoint-based kernel-level capture is that it sees everything
that runs in a machine, inside or outside a container. Nothing escapes it. It is
also easy to deploy, with no need to run anything inside the monitored
containers, and it doesn’t require sidecars.

Figure 4-5 shows how you deploy Falco in a containerized environment,
with a simplified diagram of a machine running three containers (labeled 1,
2, and 3) based on different container runtimes.

Container1|| Container 2 | | Container 3 Container 4
Docker containerd CRI-O Falco

= - - :Datar:oﬂectmn
®: 0: @

(kmod/eBPF program [

v 0S kernel]

&

Figure 4-5. Deploying Falco in a containerized environment

In such a scenario, Falco is typically installed as a container. Orchestrators
like Kubernetes make it easy to deploy Falco on every host, with facilities
like DaemonSets and Helm charts.

When the Falco container starts, it installs the driver in the operating
system. Once installed, the driver can see the system calls of any process in
any container, with no further user action required, because all of these
system calls go through the same tracepoint. Advanced logic in the driver
can attribute each captured system call to its container, so that Falco always
knows which container has generated a system call. Falco also fetches
metadata from the container runtime, making it easy to create rules that rely
on container labels, image names, and other metadata. (Falco includes a
further level of enrichment based on Kubernetes metadata, which we’ll
discuss in the next chapter.)

Running the Falco Drivers

Now that you have an idea of how they work, let’s take a look at how to
deploy and use the two Falco drivers on a local machine. (If you want to
install Falco in production environments, see Chapters 9 and 10.)

Kernel Module

Falco, by default, runs using the kernel module, so no additional steps are
required if you want to use that as your driver. Just run Falco, and it will
pick up the kernel module. If you want to unload the kernel module and
load a different version, for example because you have built your own
customized module, use the following commands:

$ sudo rmmod falco
$ sudo insmod path/to/your/module/falco.ko

eBPF Probe

To enable eBPF support in Falco, you need to set the FALCO_BPF_PROBE
environment variable. If you set it to an empty value
(FALCO_BPF_PROBE=""), Falco will load the eBPF probe from
~/.falco/falco-bpf.o. Otherwise, you can explicitly point to the path where
the eBPF probe resides:

export FALCO_BPF_PROBE="path/to/your/ebpf/probe/falco-bpf.o"

After setting the environment variable, just run Falco normally and it will
use the eBPF probe.

TIP

To ensure that Falco’s eBPF probe (and any other eBPF program) runs with the best
performance, make sure that your kernel has CONFIG_BPF_JIT enabled and that
net.core.bpf_jit_enable is set to 1. This enables the BPF JIT compiler in the kernel,
substantially speeding up the execution of eBPF programs.

Using Falco in Environments with No Kernel Access:
pdig

Kernel instrumentation, whenever possible, is always the way to go. But
what if you want to run Falco in environments where access to the kernel is
not allowed? This is common in managed container environments, like

AWS Fargate. In such environments, installing a kernel module is not an
option because the cloud provider blocks it.

For these situations, the Falco developers have implemented a user-level
instrumentation driver called pdig. It is built on top of ptrace, so it uses the
same approach as strace. Like strace, pdig can operate in two ways: it can
run a program that you specify on the command line, or it can attach to a
running process. Either way, pdig instruments the process and its children in
a way that produces a Falco-compatible stream of events.

Note that pdig, like strace, requires you to enable CAP_SYS_PTRACE for the
container runtime. Make sure you launch your container with this capability,
or pdig will fail.

The eBPF probe and kernel module work at the global host level, whereas
pdig works at the process level. This can make container instrumentation
more challenging. Fortunately, pdig can track the children of an
instrumented process. This means that running the entrypoint of a container
with pdig will allow you to capture every system call generated by any
process for that container.

The biggest limitation of pdig is performance. ptrace is versatile, but it
introduces substantial overhead on the instrumented processes. pdig
employs several tricks to reduce this overhead, but it’s still substantially
slower than the kernel-level Falco drivers.

Running Falco with pdig

You run pdig with the path (and arguments, if any) of the process you want
to trace, much as you would with strace. Here’s an example:

$ pdig [-a] curl https://example.com/

https://oreil.ly/amRqP

The -a option enables the full filter, which provides a richer set of
instrumented system calls. You probably don’t want to use this option with
Falco, for performance reasons.

You can also attach to a running process with the -p option:

¢ pdig [-a] -p 1234

To observe any effect, you will need to have Falco running in a separate
process. Use the -u command-line flag:

$ falco -u

This will enable user-space instrumentation.

Falco Plugins

In addition to system calls, Falco can collect and process many other types
of data, such as application logs and cloud activity streams. Let’s round out
this chapter by exploring the mechanism at the base of this functionality:
Falco’s plugins framework.

Plugins are a modular, flexible way to extend Falco ingestion. Anyone can
use them to add a new source of data, local or remote, to Falco. Figure 4-6
indicates where plugins sit in the Falco capture stack: they are inputs for
libscap and act as alternatives to the drivers that are used when capturing
system calls.

Rule engine

[libsinsp] Dl)
ugin

[libscap Plugin

1 ~

Plugin

Aﬁi[j”uelg eBPF probe /

Figure 4-6. Falco plugins

Plugins are implemented as shared libraries that conform to a documented
API. They allow you to add new event sources that you can then evaluate
using filtering expressions and Falco rules. They also let you define new
fields that can extract information from events.

Plugin Architecture Concepts

Plugins are dynamic shared libraries (.so files in Unix, .dl/ files in
Windows) that export C calling convention functions. Falco dynamically
loads these libraries and calls the exported functions. Plugins are versioned
using semantic versioning to minimize regressions and compatibility issues.
They can be written in any language, as long as they export the required

functions. Go is the preferred language for writing plugins, followed by
C/C++.

Plugins include two main pieces of functionality, also called capabilities:
Event sourcing

This capability is used to implement a new event source. An event
source can “open” and “close” a stream of events and can return an
event to /ibscap via a next method. In other words, it’s used to feed new
“stuft” to Falco.

Field extraction

Field extraction focuses on producing fields from events generated by
other plugins or by the core libraries. Fields, you’ll recall, are the basic
components of Falco rules, so exposing new fields is equivalent to
expanding the applicability of Falco rules to new domains. An example
is JSON parsing, where a plugin might be able to extract fields from
arbitrary JSON payloads. You’ll learn more about fields in Chapter 6.

An individual plugin can offer the event sourcing capability, field extraction
capability, or both at the same time. Capabilities are exported by
implementing certain functions in the plugin API interface.

To make it easier to write plugins, there are Go and C++ SDKs that handle
the details of memory management and type conversion. They provide a
streamlined way to implement plugins without having to deal with all the
details of lower-level functions that make up the plugin API.

The libraries will do everything possible to validate data that comes from
the plugins, to protect Falco and other consumers from corrupted data.
However, for performance reasons plugins are trusted, and because they run
in the same thread and address space as Falco, they could crash the program.
Falco assumes that you, as a user, are in control and will make sure only
plugins you have vetted are loaded or packaged.

How Falco Uses Plugins

https://oreil.ly/ylcdv
https://oreil.ly/0c2CH

Falco loads plugins based on the configuration in falco.yaml. As of summer
2022, when this book went to press, if a source plugin is loaded, the only
events processed are from that plugin and system call capture is disabled.
Also, a running Falco instance can only use one plugin. If, on a single
machine, you want Falco to collect data from multiple plugins or from
plugins and drivers, you will need to run multiple Falco instances and use a
different source for each of them.?

Falco configures plugins via the plugins property in falco.yaml. Here’s an
example:

plugins:
- name: cloudtrail
library_path: libcloudtrail.so
init_config: "
open_params: "

load_plugins: [cloudtrail]

The plugins property in falco.yaml defines the set of plugins that Falco can
load, and the load_plugins property controls which plugins load when
Falco starts.

The mechanics of loading a plugin are implemented in /ibscap and leverage
the dynamic library functionality of the operating system.3 The plugin
loading code also ensures that:

e The plugin is valid (i.e., it exports the set of expected symbols).

e The plugin’s API version number is compatible with the plugin
framework.

e Only one source plugin is loaded at a time for a given event source.

e [fa mix of source and extractor plugins is loaded for a given event
source, the exported fields have unique names that don’t overlap across
plugins.

An up-to-date list of available Falco plugins can be found in the plugins
repository under the Falcosecurity GitHub organization. As of this writing,

https://oreil.ly/g495C

the Falcosecurity organization officially maintains plugins for CloudTrail,
GitHub, Okta, Kubernetes audit logs, and JSON. In addition to these, there
are third-party plugins available for seccomp and Docker.

If you are interested in writing your own plugins, you will find everything
you need to know in Chapter 14. If you’re impatient and just want to get to
the code, you can find the source code for all the currently available plugins
in the plugins repo.

Conclusion

Congratulations for making it to the end of a rich chapter packed with a lot
of information! What you learned here is at the core of understanding and
operating Falco. It also constitutes a solid architectural foundation that will
be useful every time you need to run or deploy a security tool on Linux.

Next, you’re going to learn about how context is added to the captured data
to make Falco even more powerful.

1 Runman 2 ptrace for more information on this.

2 Note that the Falco developers are working on removing this limitation. As a consequence, in
the future Falco will be able to receive data from multiple plugins at the same time, or to
capture system calls and at the same time use plugins.

3 A dynamic library is loaded using dlopen/d1lsym in Unix, or LoadLibrary/GetProcAddress
in Windows.

Chapter 5. Data Enrichment

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the
authors’ raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the fifth chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at sgrey(@oreilly.com.

Falco’s architecture allows you to capture events from different data
sources, as you’ve learned. This process delivers raw data, which can be
very rich but isn’t very useful for runtime security unless paired with the
right context. That’s why Falco first extracts and then enriches the raw data
with contextual information, so that the rule author can comfortably use it.
Typically, we refer to this information as the event metadata. Getting
metadata can be a complex task, and getting it efficiently 1s even more
complex.

You’ve already seen that the system-state collection capabilities in libscap
and the state engine implemented by /ibsinsp (discussed in Chapter 3) are
central to this activity, but there’s much more to discover. In this chapter,
we’ll delve into the design aspects of the Falco stack to help you better
understand how data enrichment works. In particular, we will show you
libsinsp’s efficient layered approach to obtaining system, container, and
Kubernetes metadata for system call (syscall) events. This is what enables
you to access the information you need relating to different contexts

mailto:sgrey@oreilly.com

(depending on your use case), such as a container’s ID or the name of a Pod
where a suspicious event occurred. Finally, we’ll show you how plugins,
Falco’s other main data source, can implement their own data enrichment
mechanisms, opening up infinite possibilities.

Understanding Data Enrichment for Syscalls

Understanding how data enrichment works will help you to fully
understand Falco’s mechanics. Moreover, although data enrichment usually
works out of the box, each context Falco supports has its own
implementation and may need a specific configuration. Knowing the
implementation details will help you troubleshoot and fine-tune Falco.

Data enrichment in Falco refers to the process of providing the rule engine
with event metadata obtained by decoding the raw data or collecting it from
complementary sources. You can then use this metadata as fields in both
rule conditions and output formatting. Falco organizes the collected
metadata in a set of field classes, so you can easily recognize which context
they belong to. (You can find the complete list of supported fields in
Chapter 6 or, if you have a Falco installation at your fingertips, by typing
falco --1list))

One of the most significant examples of data enrichment is when using
system calls as a data source, which you learned about in Chapter 4. Since
syscalls are essential to every application, they occur in just about every
context. Information directly provided by a syscall would not be useful
without context, however, so it therefore becomes critical to collect and
connect the surrounding information.

Table 5-1 shows the different categories of metadata that Falco collects for
syscalls, and the field classes associated with each data enrichment layer.

N s 9 < o

\

~

.CO”tQXtualmetadata

“— O w~

I T

i Y~ ~Q o

Context Metadata Field classes

Operating system Processes and threads proc, thread, fd, fdlist, user, group
File descriptors
Users and groups
Network interfaces

Container ID and name container
Type
Image name
Privileged
Mount points
Health checks

Kubernetes Namespace k8s
Pod
ReplicationController
Service
ReplicaSet
Deployment

The enrichment process happens in user space and involves several
components of Falco’s stack. Most importantly, the metadata must be
immediately available every time the rule engine requests it. Collecting it
from other complementary sources on the fly would thus not be feasible, as

attempting to do so would risk blocking the rule engine and the entire flow
of incoming events.

For that reason, data enrichment involves two distinct phases. The first
initializes a local state by collecting in bulk the data that is present when
Falco starts, and the second continuously updates the local state while Falco
runs. Having a local state allows Falco to extract metadata immediately.
This design is shared among all implementation layers, as you will discover
in the following sections.

KUBERNETES SUPPORT AND THE KUBERNETES
AUDIT LOG DATA SOURCE

In the Falco documentation, you will find mention of both Kubernetes
support and Kubernetes Audit Events support. You might think
enabling Kubernetes support implies adding support for Kubernetes
audit logs as a data source, but they’re actually two distinct features.

Kubernetes support only concerns Falco’s ability to enrich an event
originating from a syscall with Kubernetes metadata. In rules, that
metadata is available through the k8s field class. That’s what we’ll talk
about in this chapter.

On the other hand, the Kubernetes audit log is an independent data
source,! providing events that do not originate from a syscall. You can
quickly identify rules that use this data source because they include
source: k8s_audit. To use the Kubernetes audit log as a data source,
you must enable support for audit logging in Kubernetes and use
Falco’s k8saudit plugin; Kubernetes then directly feeds Falco with
events, sending them via a webhook. The Kubernetes audit log data
source already provides all the necessary context data along with the
originating event, and therefore no specific enrichment mechanism is
needed. The metadata is accessible through the ka field class.

You can enable the two features (support for Kubernetes and for the
audit log as a data source) separately, since they are not dependent on
each other.

Operating System Metadata

As you learned in Chapter 3, libscap and libsinsp work together to provide
all the necessary infrastructure to create and update contextual information
in a hierarchical structure composed of several state tables (see Figure 3-4 if
you need a refresher). Those tables include information about:

e Processes and threads

https://oreil.ly/f565p
https://oreil.ly/p7OsC

¢ File descriptors
e Users and groups

e Network interfaces

At a high level, the mechanism for collecting system information is
relatively simple. At start time, one of /ibscap’s tasks is to scan the process
information pseudo-filesystem, or procfs, which provides a user-space
interface to the Linux kernel data structures and contains most of the
information to initialize the state tables. It also collects system information
(not available in /proc) using functions provided by the standard C library,
which in turn obtains the data from the underlying operating system (for
example, getpwent and getgrent for users and groups lists, respectively,
and getifaddrs for the network interfaces list). At this point, the
initialization phase is complete.

TIP

libscap and libsinsp rely on the host’s procfs to access the host’s system information.
That happens by default when Falco runs on the host since it can directly access the
host’s /proc. However, when Falco runs in a container, the /proc inside the container
refers to a different namespace. In such a situation, you can configure /ibscap via the
HOST_ROOT environment variable to read from an alternative path. If you set HOST_ROOT,
libscap will use its value as a base path when looking for system paths. For example,
when running Falco in a container, the usual approach is to mount the host’s /proc to
/host/proc inside the container and set HOST_ROOT to /host. With this setup, libscap will
read from /host/proc, and thus it will use the information provided by the host’s procfs.

Afterward, libsinsp comes into play with its state engine (see Figure 5-1). It
updates the tables by inspecting the constantly captured stream of syscalls
provided by the driver, which runs in kernel space. After the initialization
phase, Falco will not need to make any syscalls or tap into the system to
obtain updates from the Linux kernel. This approach has the double benefit
of not creating noise in the system and having a low impact on
performance. Furthermore, this technique enables libsinsp to discover

https://oreil.ly/xso1E

system changes with low latency, allowing Falco to function as a streaming
engine (one of its most important design goals).

System state tables

\

User

Kernel

Figure 5-1. System state collection before (1) and after (2) the initialization phase

The last important thing to note is that /ibsinsp updates the state tables
before dispatching the event to the rule engine. This ensures that when the
conditions or output require metadata, it will always be available and
consistent. You can then find the system metadata grouped in the set of field
classes you saw in Table 5-1: proc, thread, fd, fdlist, user, and group.

This set of information represents the basic metadata that enables a rule
author to make a syscall event usable. Think about it: how would you use a
numeric file descriptor in a rule? A filename is much better!

The system information (i.e., the state tables) produced by this data
enrichment layer is also essential for collecting contextual information at
the container level. We’ll look at that next.

Container Metadata

Additional fundamental contextual information resides in the container
runtime layer. A container runtime is a software component that can run
containers on a host operating system. It is commonly responsible for
managing container images and the lifecycles of containers running on your
system. It is also responsible for managing a set of information related to
each running container and providing that information to other applications.

Because Falco is a cloud native runtime security tool, it needs to be able to
deal with container information. To achieve this goal, /ibsinsp works with
the most commonly used container runtime environments, including

Docker, Podman, and CRI-compatible2 runtimes like containerd and CRI-
O.

When libsinsp finds a running container runtime on the host, the container
metadata enrichment functionality works out of the box in almost all cases.
For example, /ibsinsp tries to use Docker’s Unix socket at
/var/run/docker.sock; if this exists, libsinsp automatically connects to it and
starts grabbing container metadata. /ibsinsp does the same for Podman and
containerd. For other CRI-compatible runtimes, you will need to pass the
socket path to Falco using the - -cri command-line flag (for CRI-O, for
example, you would pass /var/run/crio/crio.sock).

TIP

If the HOST_ROOT environment variable is set, /ibsinsp will use its value as the base path

when looking for those Unix sockets. For example, when running Falco in a container,
it’s common to set HOST_ROO0T=/host and mount ~var/run/docker.sock to
/host/var/run/docker.sock inside the container.

Regardless of which container runtime you are using, at initialization
libsinsp requests a list of all running containers, which it uses to initialize
an internal cache. At the same time, /ibsinsp updates the state table of
running processes and threads, associating each of them with its respective
container ID, if any.

libsinsp handles subsequent updates by using the syscalls stream coming
from the driver (similar to what it does for system information). Since
container information is always associated with a process, /ibsinsp tracks all
new processes and threads. When it detects one, it looks up the
corresponding container ID in the internal cache. If the container ID is not
in the cache, /ibsinsp queries the container runtime to gather the missing
data.

DEALING WITH MISSING METADATA

The process of querying the container runtime happens asynchronously
to avoid blocking the stream of events. In some environments, this
operation is not fast enough to be completed asynchronously, so
attempting it leads to empty container metadata fields. For CRI-
compatible runtimes, Falco provides an option to disable asynchronous
metadata fetching:

--disable-cri-async

Although you won’t generally need to use this, it can be helpful if you
need to wait for all the container metadata to be fetched before moving
to the next input event so that no metadata is lost. However, you might
see a performance penalty depending on the number of containers and
the frequency with which they are created, started, and stopped.
Disabling asynchronous fetching can be helpful when debugging or in
systems with a very low syscall rate. In other circumstances,
performance may be significantly degraded.

Ultimately, each syscall-generated event that occurs in a container has a
process or thread ID that maps to a container ID and, consequently, to the
container metadata (as shown in Figure 5-2). So, when the rule engine
requires this metadata, /ibsinsp looks it up from the state tables and returns
system information along with the container metadata. You will find the
available container metadata grouped in the field class container, which
can be used in both conditions and output formatting.

" Process table |

Processinfo

name=cat
user=root
container=6261636b746f

Container info

id=6261636b746f
name=great_scott
image=docker.io/library]/...

Figure 5-2. Container info in the libsinsp state hierarchy

Note that the field container.id can contain either the container ID or the
special value host. This special value indicates that the event did not
happen inside a container. The condition container.id != hostisa

common way to express a rule that only applies in the context of a
container.

In the final data enrichment layer, Falco collects the Kubernetes metadata
associated with system calls. We’ll look at how this works next.

Kubernetes Metadata

Kubernetes, the flagship project of the Cloud Native Computing
Foundation, is an open source platform for managing workloads and
services. It has introduced many new concepts that make it easier to manage
and scale clusters and is the most popular container orchestration system
today.

One of the essential features of Kubernetes is encapsulating your
applications in objects called Pods, which contain one or more containers.
Pods are ephemeral objects that you can quickly deploy and easily replicate.
Services in Kubernetes are an abstraction that allows you to expose a set of
Pods as a single network service. Finally, Kubernetes lets you arrange those
and many other objects into namespaces, which are objects that allow
partitioning of a single cluster into multiple virtual clusters.

While these concepts greatly facilitate managing and automating clusters,
they also introduce a set of contextual information about how and where
your application is running. Awareness of this information is essential, since
knowing that something has happened in your Kubernetes cluster is of little
use if you don’t know where it happened (for example, in which namespace
or Pod). Falco collects information such as the container image name, Pod
name, namespace, labels, annotations, and exposed service names so it can
offer as accurate a view as possible of your deployments and applications.
This is important for runtime alerting and protection of your infrastructure,
because you’re typically much more interested in what service or
deployment is showing a strange behavior than in getting a container ID or
some other hard-to-link piece of information. As a cloud native tool, Falco
can readily obtain this metadata and attach it to the event.

Similar to the operating system and container metadata collection
mechanisms you saw in the previous sections, this feature allows Falco to
enrich syscall events by adding Kubernetes metadata. For full Kubernetes
support, you must opt in by passing two command-line options to Falco:

--k8s-apt (or just -k)

This enables Kubernetes support by connecting to the API server
specified as an argument (e.g.,

http://admin:password@127.0.0.1:8080).

--k8s-api-cert (orjust -K)

This provides certificate materials to authenticate the user and
(optionally) verify the Kubernetes API server’s identity.

Further details are provided in Chapter 10.

TIP

When Falco is running in a Pod, Kubernetes injects that information in the container, so
you just need to set:

-k https://$(KUBERNETES_SERVICE_HOST)
-K /var/run/secrets/kubernetes.io/serviceaccount/token

Most installation methods use this strategy to fetch those values automatically.

Once Kubernetes support is configured, libsinsp will get all the necessary
data from Kubernetes to create and maintain a local copy of the state of the
cluster. However, unlike the other enrichment mechanisms that get metadata
locally from the host, /ibsinsp has to connect to the Kubernetes API server
(usually a remote endpoint) to get cluster information. Because of this
difference, the implementation design needs to take performance and
scalability concerns into account.

A typical Falco deployment (pictured in Figure 5-3) runs one Falco sensor
on every node in the cluster. At startup, each sensor connects to the API
server to collect the cluster data and build the initial state locally. From then
on, each sensor will use the Kubernetes watch API to periodically update
the local state.

https://oreil.ly/g0hCZ

f Kubernetes 1 (Kubernetes 1 i Kubernetes |
node node node

N N N N _§ _§N _§N _§N _§N _§N N _§N_ _J _§ §}N _§N N N _§N N __§ _§N _J§ _©§_ _J}N_

[
|[Falco] [Falco] DaemonSet [Falco]:

L‘------Jﬂ------’------L------JJ

Kubernetes APl server

Figure 5-3. A Falco deployment using a DaemonSet to ensure that all nodes run a copy of a Pod

Since Falco sensors are distributed in the cluster (one per node) and grab
data from the API server—and because collecting some resource types from
Kubernetes may result in huge responses that severely impact both the API
server and Falco—/ibsinsp has mechanisms to avoid congestion. First, it
waits for a short time between downloading each chunk. Falco allows you
to fine-tune that wait time, along with several other parameters, by
changing a value in /etc/falco/falco.yaml.

More importantly, it’s possible to request only the relevant metadata for the
targeted node from the API server. This is helpful because Falco’s
architecture 1s distributed, so each sensor only needs data from the node on
which the event occurred. This optimization is fundamental if you want to
scale Falco on a cluster with thousands of nodes. To enable it, add the - -
k8s-node flag to the Falco command-line arguments, passing the current
node name as the value. You can usually obtain this name easily from the
Kubernetes Downward API.3

If you don’t include the - -k8s-node flag, /ibsinsp will still be able to get
the data from Kubernetes, but each Falco sensor will have to request the
whole cluster’s data. This can introduce a performance penalty on large

https://oreil.ly/WTTGU
https://oreil.ly/F1Dnv

clusters, so we strongly discourage it. (You will learn more about running
Falco on a production Kubernetes cluster in Part I11.)

AN ALTERNATIVE WAY TO ACQUIRE KUBERNETES
METADATA

Although the method described in this section is the recommended way
to obtain Kubernetes metadata, there’s another, leaner working mode
worth mentioning. /ibsinsp 1s smart enough to get a subset of the
metadata even without connecting to the Kubernetes API server. That’s
possible because the kubelet annotates some metadata directly on the
container: specifically the ID, name, namespace, and labels of the Pod
(which are usually the most relevant context information). Since
libsinsp retrieves those annotations using the container runtime API, it
also tries to use them when possible and falls back to the Kubernetes
API server when the missing data is needed. This strategy is always
enabled, so you won’t need to configure it.

You can think of this as an optimization, but also as a feature. If the
immediately available metadata is enough for your use case (for
example, if you’re using a custom ruleset that doesn’t need the
complete set of Kubernetes metadata), you don’t have to enable full
support for Kubernetes. If you don’t, you will still get the ID, name,
namespace, and labels of the Pod.

When Kubernetes metadata is available, you will find it grouped in the k8s
field class. Many of the Falco default rules include k8s fields in their
conditions. Falco, when used with the -pk command-line option,
automatically appends the most crucial Kubernetes metadata to the output
of all notifications, as you can see in the following example (more on this in
“Qutput Settings”):

15:29:40.515013896: Notice System user ran an interactive command (user=bin
user_loginuid=-1 command=1login container_id=46c99eea62a8
image=docker.io/1library/nginx) k8s.ns=default k8s.pod=my-app-84d64cb8fb-zmxgz
container=46c99eea62a8

https://oreil.ly/sUOMa

This output is the result of the complex mechanism you’ve just learned
about that allows you to obtain accurate and contextualized information to
immediately identify what event has just occurred, and where.

So far, we’ve only discussed Falco’s data enrichment process for system
calls. Although that’s likely to be the most relevant information for most
users, you should know that Falco also offers custom enrichment
mechanisms. We’ll take a quick look at how to implement those next.

Data Enrichment with Plugins

Plugins can extend Falco by adding new data sources and defining new
fields to describe how to use these new events. As you’ll recall from
Chapter 4, a plugin that offers the field extraction capability works on
events provided by other plugins or core libraries. While it might not seem
obvious yet, a plugin with this capability has everything it takes to provide
a custom data-enrichment mechanism. First, it can receive data from any
data source. Second, it can define new fields. Fundamentally, it allows the
plugin author to implement logic to return the values of those fields, thus
potentially providing additional metadata. This opens the door to the
possibility of implementing custom data enrichment.

When such a plugin runs, /ibsinsp calls the plugin function for field
extraction for each incoming event. The function receives the raw payload
of the event and the list of fields the rule engine needs. The plugin API
interface does not impose any other constraints to make the extraction
process work. Although data enrichment is possible in the flow just
described, the plugin author will still have to consider all the implications of
the use case; for example, the plugin will need to manage the local state and
subsequent updates. Extracting fields and enriching the event is thus
entirely up to the plugin author. The APIs merely provide the essential

tools.

Chapter 14 shows you how to implement a plugin. If you’re interested in
doing that, however, our advice is to read the next chapter about fields and

filters first, so you have a more complete picture of how extracting data
works.

Conclusion

This chapter illustrated how Falco works internally to provide a rich set of
metadata. Falco makes this metadata available as fields you can use in
rules’ conditions. Read on to discover how to use fields to filter only those
events that are really pertinent to your needs.

1 In older Falco versions, the Kubernetes audit log was a built-in data source. From Falco 0.32,
this data source has been refactored out as a plugin.

2 The Container Runtime Interface (CRI) is a plugin interface introduced by Kubernetes that
enables the kubelet to use any container runtimes implementing the CRI.

3 The Downward API allows containers to consume information about themselves or the
cluster without using the Kubernetes API server. Among other things, it allows exposing the
current node name through an environment variable that can be then used in Falco command-
line arguments.

https://oreil.ly/fiCGp

Chapter 6. Fields and Filters

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the
authors’ raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the sixth chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at sgrey(@oreilly.com.

It’s finally time to take all the theory you learned in the previous chapters
and start putting it into practice. In this chapter you will learn about Falco
filters: what they are, how they work, and how to use them.

Filters are at the core of Falco. They are also a powerful investigation
instrument that can be used in several other tools, such as sysdig. As a
consequence, we expect that you will come back and consult this chapter
often, even after finishing the book—so we’ve structured it to be used as a
reference. For example, it contains tables with all of the operators and data
types the filtering language provides, designed for quick consultation, as
well as a well-documented list of Falco’s most useful fields. This chapter’s
contents will be handy pretty much every time you write a Falco rule, so
make sure to bookmark it!

What Is a Filter?

Let’s start with a semiformal definition:

mailto:sgrey@oreilly.com

A filter in Falco is a condition containing a sequence of comparisons that
are connected by Boolean operators. Each of the comparisons evaluates
a field, which is extracted from an input event, against a constant, using
a relational operator. Comparisons in filters are evaluated left to right,
but parentheses can be used to define precedence. A filter is applied to an
input event and returns a Boolean result indicating if the event matches

the filter.

Ouch. That description is extremely dry and somewhat complicated. But if
we unpack it, with the aid of some examples, you’ll see it’s not too bad.
Let’s start with the first sentence:

A filter in Falco is a condition containing a sequence of comparisons that
are connected by Boolean operators.

This just means that a filter looks like this:

A =B and not C !=D

In other words, if you can write an if condition in any programming
language, the filter syntax will look very familiar. Here’s the next sentence:

Each of the comparisons evaluates a field, which is extracted from an
input event, against a constant, using a relational operator.

This tells us that Falco’s filtering syntax is based on the concept of fields,
which we will describe in detail later in this chapter. Field names have a
dotted syntax and appear on the left side of each comparison. On the right
side 1s a constant value that will be compared against the field. Here’s an
example:

proc.name = emacs or proc.pid != 1234

Moving on:

Comparisons in filters are evaluated left to right, but parentheses can be
used to define precedence.

This means you can organize your filter using parentheses. For example:

proc.name = emacs or (proc.name = vi and container.name=redis)

Again, this works exactly the same as using parentheses inside a logical
expression in your favorite programming language. Now for the final
sentence:

A filter is applied to an input event and returns a Boolean result
indicating if the event matches the filter.

When you specify a filter in a Falco rule, the filter is applied to every input
event. For example, if you’re using one of Falco’s drivers, filters are applied
to every system call. The filter evaluates the system call and returns a
Boolean value: true or false. true means that the event satisfies the filter
(we say that the filter matches the event), while false means that the filter
rejects, or drops, the event. For example, this filter:

proc.name = emacs Oor proc.name = vi

matches (returns true for) every system call generated by processes called
emacs or vi.

That’s essentially all you need to know at a high level. Now let’s dive into
the details.

Filtering Syntax Reference

From a syntactical point of view, as we mentioned, writing a Falco filter is
very similar to writing an i1f condition in any programming language, so if
you have basic programming experience you shouldn’t expect any major
surprises. However, there are some areas that are specific to the type of
matching you do in Falco. This section takes a look at the syntax in detail,
giving you the full picture.

Relational Operators

Table 6-1 provides a reference of all of the available relational operators,
including an example for each of them.

N s 9 < o

S TR N S I

1%

N U~ 88 w 'm0 R T~ 0 QL VvV N T8 w

Operator

<=, <, >=, >

contains

icontains

bcontains

startswith

bstartswith

endswith

in

intersects

pmatch

Description Example

General equality/inequality operators. Can be used
with all types of fields.

Numeric comparison operators. Can be used with
numeric fields only.

Can be used with string fields only. Performs a
case-sensitive string search for the given constant
inside the field value, and returns true if the field
value contains the constant.

Like contains, but case-insensitive.

Like contains, but allows you to perform checks
on binary buffers.

Can be used with string fields only. Returns true if
the given constant matches the beginning of the
field value.

Like startswith, but allows you to perform
checks on binary buffers.

Can be used with string fields only. Returns true if
the given constant matches the end of the field
value.

Compares the field value to multiple constants and
returns true if one or more of those constants
equals the field value. Can be used with all fields,
including numeric fields and string fields.

Returns true when a field with multiple values
includes at least one value that matches one of the
provided constants.

Returns true if one of the constants is a prefix of
the field value.

Note: pmatch can be used as an alternative to the
in operator, and performs better with large sets of

proc.name = emacs

evt.buflen > 100

fd.filename contains
passwd

user .name icontains
john

evt.buf bcontains
DEADBEEF

fd.directory
startswith "/etc"

evt.buf bstartswith
DEADBEEF

fd.filename
endswidth ".key"

proc.name in (vi,
emacs)

ka.req.pod.volumes.h
ostpath intersects

(/proc,
/var/run/docker.sock

)

fd.name pmatch
(/var/run, /etc,
/1ib, /usr/1ib)

constants because it is implemented internally as a
trie instead of multiple comparisons.

exists Returns true if the given field exists for the input
event.
glob Matches the given string against the field value

according to Unix shell wildcard patterns.
For more details, enterman 7 glob in your

terminal.

Logical Operators

fd.name =
/var/run/docker
succeeds because
/var/run is a prefix of
/var/run/docker.
fd.name = /boot does
not succeed because no
constant is a prefix of
/boot.

fd.name = /var does
not succeed because no
constant is a prefix of
/var.

evt.res exists

fd.name glob
'/home/*/.ssh/*'

The logical operators that you can use in Falco filters are straightforward
and don’t include any surprises. Table 6-2 lists them and provides

examples.

N s 9 < o

o~

S TR N S I

1%

~ O W'm U 8 ~ O QU VU XN 8 - O N =,

Operator Example

and proc.name = emacs and proc.cmdline contains myfile.txt
or proc.name = emacs or proc.name = vi
not not proc.name = emacs

Strings and Quoting

String constants can be specified without quotation marks:

proc.name = emacs

Quotes can, however, be used to enclose strings that include spaces or
special characters. Both single quotes and double quotes are accepted. For
example:

proc.name = "my process" or proc.name = 'my process'

This means you can include quotes in strings:

evt.buffer contains

Fields

As you can see, Falco filters are not very complicated. However, they are
extremely flexible and powerful. This power comes from the fields you can
use in filtering conditions. Falco gives you access to a variety of fields, each
of which exposes a property of the input events that Falco captures. Since
fields are so important, let’s take a look at how they work and how they are
organized. Then we’ll discuss which ones to use and when.

Argument Fields Versus Enrichment Fields

Fields expose properties of input events as typed values. A field, for
example, can be a string, like the process name, or a number, like the
process ID.

At the highest level, Falco offers two categories of fields. The first category
includes the fields that are obtained by dissecting input events. System call
arguments, like the filename for an open system call or the buffer argument
for a read system call, are examples of such fields. You access these fields
with the following syntax, where X is the name of the argument you want to
access:

evt.arg.X

or, where N is the position of the argument:

evt.arg[N]

For example:

evt.arg.name = /etc/passwd
evt.arg[1] = /[etc/passwd

To find out which arguments a specific event type supports, sysdig is your
friend. The output line for an event in sysdig will show you all of its
arguments and their names.

The second category consists of fields that derive from the enrichment
process that /ibsinsp performs while capturing system calls and other
events, described in Chapter 5. Falco exports many fields that expose the
content of /ibsinsp’s thread and file descriptor tables, adding rich context
about the events received from the drivers.

To help you understand how this works, let’s take the proc.cwd field as an
example. For each system call that Falco captures, this field contains the
current working directory of the process that issued the system call. This is
handy if you want to capture all of the system calls generated by processes
that are currently running inside a specific directory; for example:

proc.cwd = /tmp

The working directory of the process is not part of the system call, so
exposing this field requires tracking the working directory of a process and
attaching it to every system call that the process generates. This, in turn,
involves four steps:

1. Collect the working directory when a process starts, and store it in the
process’s entry in the thread table.

2. Keep track of when the process changes its working directory (by
intercepting and parsing the chdir system call) and update the thread
table entry accordingly.

3. Resolve the thread ID of every system call to identify the
corresponding thread table entry.

4. Return the thread table entry’s cwd value.

libsinsp does all of this, which means that the proc.cwd field is available
for every system call, not only for directory-related ones like chdir. It’s
impressive how much hard work Falco does to expose this field to you!

Enrichment-based filtering is powerful because it allows you to filter
system calls (and any other events) based on properties that are not included
with the syscalls themselves, but are of great use for security policies. For
example, the following filter allows you to capture the system calls that
read from or write to /etc/passwd:

evt.is_io=true and fd.name=/etc/passwd

It works even if these system calls originally don’t contain any information
about the filename (they operate on file descriptors). The hundreds of
enrichment-based fields available out of the box are the main reason why
Falco 1s so powerful and versatile.

Mandatory Fields Versus Optional Fields

Some fields exist for every input event, and you will be guaranteed to find
them regardless of the event type or family. Examples of such fields are
evt.ts, evt.dir, and evt. type.

However, most fields are optional and only present in some input event
types. Typically, you don’t have to worry about this, as fields that don’t
exist will just evaluate to false without generating an error. For example,
the following check will evaluate to false for all events that don’t have an
argument called name:

evt.arg.name contains /etc

In some cases, though, you might want to explicitly check if a field exists.
One reason would be to resolve ambiguities like whether the filter
evt.arg.name != /etc returns true or false for events that don’t have
an argument called name. You can answer questions like this by using the
exists relational operator:

evt.arg.name exists and evt.arg.name != Jetc

Field Types

Fields have types, which are used to validate values and ensure the syntactic
correctness of filters. Take the following filter:

proc.pid = hello
Falco and sysdig will reject this with the following error:

filter error at position 16: hello is not a valid number

This happens because the proc.pid field is of type INT64, so its value must
be an integer. The typing system also allows Falco to improve the rendering
of some fields by understanding the meaning behind them. For example,
evt.arg.res is of type ERRNO, which by default is a number. However,

when possible, Falco will resolve it into an error code string (such as
EAGAIN), which improves the readability and usability of the field.

When we looked at relational operators, we noted how some are very
similar to the ones in most programming languages, while others are unique
to Falco filters. The same is true for field types. Table 6-3 lists the types you
may encounter in Falco filter fields.

D~ QN

~,

QU ™ ®

v oaN e o~

Type

INTS, INT16,
INT32, INT64,
UINTS, UINT16,
UINT32, UINT64,
DOUBLE

CHARBUF
BYTEBUF
ERRNO
FD

Description

Numeric types, like in your favorite programming language.

A printable buffer of characters.
A raw buffer of bytes not suitable for printing.
An INT64 value that, when possible, is resolved to an error code.

An INT64 value that, when possible, is resolved to the value of the file
descriptor. For example, for a file this gets resolved to the filename; for a

PID
FSPATH
SYSCALLID

SIGTYPE

RELTIME

ABSTIME
PORT
L4PROTO

BOOL
IPV4ADDR
DYNAMIC

FLAGSS8, FLAGS16,
FLAGS32

UID
GID
IPADDR
IPNET
MODE

socket it gets resolved to the TCP connection tuple.
An INT64 value that, when possible, is resolved to the process name.
A string containing a relative or absolute filesystem path.

A 16-bit system call ID. When possible, the value gets resolved to the system
call name.

An 8-bit signal number that, when possible, gets resolved to the signal name
(e.g., SIGCHLD).

A relative time, with nanosecond precision, rendered as a human-readable
string.

An absolute time interval.
A TCP/UDP port. When possible, this gets resolved to a protocol name.

A 1-byte IP protocol type. When possible, this gets resolved to a L4 protocol
name (TCP, UDP).

A Boolean value.
An IPv4 address.

An indication that the field type can vary depending on the context. Used for
generic fields like evt.rawarg.

A flags word (i.e., a set of flags encoded as a number using binary encoding)
that, when possible, is converted into a readable string (e.g.,

O_RDONLY | 0_CLOEXEC). The resolution into the string is dependent on the
context, as events can register their own flag values. So, for example, flags for
an Iseek system call event will be converted into values like SEEK_END,
SEEK_CUR, and SEEK_SET, while sockopt flags will be converted into
SOL_SOCKET, SOL_TCP, and so on.

A Unix user ID, resolved to a username when possible.

A Unix group ID, resolved to a group name when possible.
An IPv4 or IPv6 address.

An IPv4 or IPv6 network.

A 32-bit bitmask to represent file modes.

How do you find out the type of a field you want to use? The best way is to
invoke Falco with the - -1list and -v options:

$ falco --list -v

This will print the full list of fields, including type information for each
entry in the list.

Using Fields and Filters

Now that you’ve learned about filters and fields, let’s take a look at how
you can use them in practice. We’ll focus on Falco and sysdig.

Fields and Filters in Falco

Fields and filters are at the core of Falco rules. Fields are used to express
rules’ conditions, and are part of both conditions and outputs. To
demonstrate how, we’ll craft our own rule.

Let’s say we would like Falco to notify us every time there is an attempt to
change the permissions of a file and make it executable by another user.
When that happens, we would like to know the name of the file that was
changed, the new mode of the file, and the name of the user who caused the
trouble. We would also like to know whether the mode change attempt was
successful or not.

Here is the rule:

- rule: File Becoming Executable by Others

desc: Attempt to make a file executable by other users

condition: (evt.type=chmod or evt.type=fchmod or evt.type=fchmodat) and
evt.arg.mode contains S_IXOTH

output: attempt to make a file executable by others (file=%evt.arg.filename
mode=%evt.arg.mode user=%user.name failed=%evt.failed)

priority: WARNING

The condition section is where the rule’s filter is specified.

File modes, including the executable bit, are changed using the chmod
system call, or one of its variants. Therefore, the first part of the filter
selects events that are of type chmod, fchmod, or fchmodat:

evt.type=chmod or evt.type=fchmod or evt.type=fchmodat

Now that we have the right system calls, we want to accept only the subset
of them that set the “other” executable bit. Reading the chmod manual page
reveals that the flag we need to check is S_IXOTH. We determine its
presence by using the contains operator:

evt.arg.mode contains S_IXOTH

Combining the two pieces with an and gives us the full filter. Easy!

Now, let’s focus our attention on the output section of the rule. This is
where we tell Falco what to print on the screen when the rule’s condition
returns true. You will notice that this is just a printf-like string that mixes
regular text with fields, whose values will be resolved in the final message:

attempt to make a file executable by others (file=%evt.arg.filename
mode=%evt.arg.mode user=%user.name failed=%evt.failed)

The only thing you need to remember is that you need to prefix field names
in the output string with the % character; otherwise they will just be treated
as part of the string.

Time for you to try this! Save the preceding rule in a file called ch6.yam!.
After that, run this command line in a terminal:

$ sudo falco -r ché6.yaml

Then, in another terminal, run these two commands:

$ echo test > test.txt
$ chmod o+x test.txt

This is the output you will get in the Falco terminal:

17:26:43.796934201: Warning attempt to make a file executable by others
(file=/home/loris/test.txt
mode=S_IXOTH|S_IWOTH|S_IROTH|S_IXGRP|S_IWGRP|S_IRGRP|S_IXUSR|S_IWUSR|S_IRUSR
user=root failed=false)

https://oreil.ly/zuKuC

Congratulations, you’ve just performed your very own Falco detection!
Note how evt.arg.mode and evt.failed are rendered in a human-
readable way, even if internally they are numbers. This shows you the
power of the filter/fields type system.

Fields and Filters in sysdig

An introduction to sysdig was provided in Chapter 4 (if you need a
refresher, see “sysdig”). Here we will look specifically at how filters and
fields are used in sysdig.

While Falco is based on the concepts of rules and of notifying the user
when rules match, sysdig focuses on investigation, troubleshooting, and
threat-hunting workflows. In sysdig, you use filters to restrict the input, and
you (optionally) use field formatting to control the output. The combination
of the two provides a ton of flexibility during investigations.

Filters in sysdig are specified at the end of the command line:

$ sudo sysdig proc.name=echo

Output formatting is provided using the -p command-line flag, and uses the
same printf-like syntax that we just described when talking about Falco
outputs:

$ sudo sysdig -p"type:%evt.type proc:%proc.name" proc.name=echo

An important thing to keep in mind is that, when the -p flag is used, sysdig
will only print an output line for the events in which all of the specified
filters exist. So, this command:

$ sudo sysdig -p"%evt.res %proc.name"

will print a line only for events that have both a return value and a process
name, skipping, for example, all the system call “enter” events. If you care

about seeing all of the events, put a star (*) at the beginning of the
formatting string:

$ sudo sysdig -p"*%evt.res %proc.name"

When a field is missing, it will be rendered as <NA>.

When no formatting is specified with -p, sysdig displays input events in a
standard format that conveniently includes all of the arguments and
argument names, for every system call. Here’s an example sysdig output
line for an openat system call, with the system call arguments highlighted
in bold for visibility:

4831 20:50:01.473556825 2 cat (865.865) < openat £d=7(<f>/tmp/myfile.txt)
dirfd=-100(AT_FDCWD) name=/tmp/myfile.txt £lags=1(0_RDONLY) mode=0 dev=4

Each of the arguments can be used in a filter with the evt.arg syntax:

$ sudo sysdig evt.arg.name=/tmp/myfile.txt

As a more advanced example, let’s convert the File Becoming Executable
by Others rule we created for Falco in the previous section into a sysdig
command line:

$ sudo sysdig -p"attempt to make a file executable by others
(file=%evt.arg.filename mode=%evt.arg.mode user=%user.name
failed=%evt.failed)" " (evt.type=chmod or evt.type=fchmod or
evt. type=fchmodat) and evt.arg.mode contains S_IXOTH"

This shows how easy it is to use sysdig as a development tool when
creating new rules.

Falco’s Most Useful Fields

This section presents a curated list of some of the most important Falco
fields, organized by class. You can use this list as a reference when writing

filters. For a full list, including all plugin fields, use the following at the
command line:

$ falco --list -v

General

The fields listed in Table 6-4 apply to every event and include general
properties of an event.

N s 9 < o

>

-

f.ll,.[er

O~ 8 ©n ©n

f.l eldS

Field name Description

evt.num The event number.

evt.time The event timestamp as a string that includes the nanosecond part.
evt.dir The event direction; can be either > for enter events or < for exit events.
evt.type The name of the event (e.g., open).

evt.cpu The number of the CPU where this event happened.

evt.args All the event arguments, aggregated into a single string.

evt.rawarg One of the event arguments, specified by name (e.g., evt.rawarg.fd).
evt.arg One of the event arguments, specified by name or by number. Some events

(such as return codes or file descriptors) will be converted into a text
representation when possible (e.g., evt.arg.fd or evt.arg[0]).

evt.buffer The binary data buffer for events that have one, like read, recvfrom, etc. Use
this field in filters with contains to search in I/O data buffers.

evt.buflen The length of the binary data buffer for events that have one, like read,
recvfrom, etc.

evt.res The event return value, as a string. If the event failed, the result is an error
code string (e.g., ENOENT); otherwise, the result is the string SUCCESS.

evt.rawres The event return value, as a number (e.g., -2). Useful for range comparisons.
evt.failed true for events that returned an error status.
Processes

The fields in this class contain all the information you need about processes
and threads. The information in Table 6-5 comes mostly from the process
table that /ibsinsp constructs in memory.

N s 9 < o

.. QA L o v

f.ll,.[er

O~ 8 ©n ©n

f.l eldS

Field name

proc

proc.

proc.

proc.

proc.
proc.
proc.

proc.

proc.

proc.

.pid

exe

name

args

env

cwd
ppid

pname

pcmdline

loginshelli

thread. tid

thread.vtid

proc

proc.

proc

proc

.vpid

sid

.Shame

.tty

Description

The ID of the process generating the event.

The first command-line argument (usually the executable name or a custom
one).

The name (excluding the path) of the executable generating the event.

The arguments passed on the command line when starting the process
generating the event.

The environment variables of the process generating the event.
The current working directory of the event.
The PID of the parent of the process generating the event.

The name (excluding the path) of the parent of the process generating the
event.

The full command line (proc.name + proc.args) of the parent of the process
generating the event.

The PID of the oldest shell among the ancestors of the current process, if there
is one. This field can be used to separate different user sessions and is useful
in conjunction with chisels like spy_user.

The ID of the thread generating the event.

The ID of the thread generating the event as seen from its current PID
namespace.

The ID of the process generating the event as seen from its current PID
namespace.

The session ID of the process generating the event.

The name of the current process’s session leader. This is either the process
with pid=proc.sid or the eldest ancestor that has the same session ID as the
current process.

The controlling terminal of the process. This is @ for processes without a
terminal.

File Descriptors

Table 6-6 lists the fields related to file descriptors, which are at the base of
I/O. Fields containing details about files and directories, network

connections, pipes, and other types of interprocess communication can all
be found in this class.

N s o< v

S

o

f.ll,.[er

O~ 8 ©n ©n

f.l eldS

Description

Field name

fd.
fd.

fd.

fd.
fd.
fd.1
fd.
fd.
fd.
fd.
fd.
fd.
fd.
fd.
fd.
fd.

num

typechar

name

directory
filename
1p

cip

sip

lip

rip

port
cport
sport
lport
rport

l4proto

The unique number identifying the file descriptor.

The type of the file descriptor, as a single character. Can be f for file, 4 for
IPv4 socket, 6 for IPv6 socket, u for Unix socket, p for pipe, e for eventfd, s
for signalfd, 1 for eventpoll, i for inotify, or o for unknown.

The full name of the file descriptor. If it’s a file, this field contains the full
path. If it’s a socket, this field contains the connection tuple.

If the file descriptor is a file, the directory that contains it.

If the file descriptor is a file, the filename without the path.

(Filter only) Matches the IP address (client or server) of the file descriptor.
The client’s IP address.

The server’s IP address.

The local IP address.

The remote [P address.

(Filter only) Matches the port (either client or server) of the file descriptor.
For TCP/UDP file descriptors, the client’s port.

For TCP/UDP file descriptors, the server’s port.

For TCP/UDP file descriptors, the local port.

For TCP/UDP file descriptors, the remote port.

The IP protocol of a socket. Can be tcp, udp, icmp, or raw.

Users and Groups

Table 6-7 lists the fields in the user and group filter classes.

N S0 30 I DN | 3 0o £ 8 2T 9 Lo 3 A% m~m=m¥wUN U~ 8 v un S~

v QL ~ B

Field name Description
user.uid The user’s ID.
user.name The user’s name.
group.gid The group’s ID.
group.name The group’s name.
Containers

The fields in the container class (Table 6-8) can be used for everything
related to containers, including obtaining IDs, names, labels, and mounts.

N s 9 < o

. UL O € ¥ © «~ C© O 4«

f.ll,.[er

O~ 8 ©n ©n

S

~,

v QL ~ B

Field name

container.id
container.name
container.image
container.image.
id
container.privil
eged

container.mounts

container.mount

container.image.
repository

container.image.
tag

container.image.
digest

Kubernetes

Description

The container ID.
The container name.
The container image name (e.g., falcosecurity/falco:latest for Docker).

The container image ID (e.g., 6f7e2741b66b).

true for containers running as privileged, false otherwise.

A space-separated list of mount information. Each item in the list has the
format <source>:<dest>:<mode>:<rdrw>:<propagation>.

Information about a single mount, specified by number (e.g.,
container.mount[0]) or mount source (e.g.,
container.mount[/usr/local]). The pathname can be a glob (e.g.,
container.mount[/usr/local/*]), in which case the first matching mount
will be returned. The information has the format <source>: <dest>:
<mode>:<rdrw>:<propagation>. If there is no mount with the
specified index or matching the provided source, this returns the string
"none" instead of a NULL value.

The container image repository (e.g., falcosecurity/falco).

The container image tag (e.g., stable, latest).

The container image registry digest (e.g.,
sha256:d977378f890d445c15e51795296e4e5062f109ce6da83e0a355fc4ad
8699d27).

When Falco is configured to interface with the Kubernetes API server, the
fields in this class (listed in Table 6-9) can be used to fetch information
about Kubernetes objects.

N s 9 < o

X

oS

f.ll,.[er

O~ 8 ©n ©n

f.l eldS

Field name Description

k8s.pod.name The Kubernetes Pod name.
k8s.pod.id The Kubernetes Pod ID.
k8s.pod.label The Kubernetes Pod label (e.g., k8s.pod. label. foo).

k8s.rc.name The Kubernetes ReplicationController name.

k8s.rc.id The Kubernetes ReplicationController ID.

k8s.rc.label The Kubernetes ReplicationController label (e.g., k8s.rc.label. foo).
k8s.svc.name The Kubernetes Service name. Can return more than one value, concatenated.
k8s.svc.id The Kubernetes Service ID. Can return more than one value, concatenated.
k8s.svc.label The Kubernetes Service label (e.g., k8s.svc.label.foo). Can return more

than one value, concatenated.

k8s.ns.name The Kubernetes namespace name.

k8s.ns.id The Kubernetes namespace ID.

k8s.ns.label The Kubernetes namespace label (e.g., k8s.ns. label. foo).
k8s.rs.name The Kubernetes ReplicaSet name.

k8s.rs.id The Kubernetes ReplicaSet ID.

k8s.rs.label The Kubernetes ReplicaSet label (e.g., k8s.rs.label.foo).

k8s.deployment.n The Kubernetes Deployment name.
ame

k8s.deployment.i The Kubernetes Deployment ID.
d

k8s.deployment.l The Kubernetes Deployment label (e.g., k8s.rs.label. foo).
abel

CloudTrail

The fields in the cloudtrail class (listed in Table 6-10) are available when
the CloudTrail plugin is configured. They allow you to build filters and
formatters for AWS detections.

N s 9 < o

.U~ 0O I T % U T '~ ~

f.ll,.[er

O~ 8 ©n ©n

v QL ~ B

Field name

ct.
ct.

ct.

ct.
ct.
ct.
ct.
ct.

ct.

s3.
s3.
s3.

error
src

shortsrc

name
user
region
srcip
useragent

readonly

uri
bucket

key

ec2.name

Description

The error code from the event. Will be "" if there was no error.
The source of the CloudTrail event (eventSource in the JSON).

The source of the CloudTrail event (eventSource in the JSON), without the
.amazonaws . com trailer.

The name of the CloudTrail event (eventName in the JSON).

The user of the CloudTrail event (userIdentity.userName in the JSON).
The region of the CloudTrail event (awsRegion in the JSON).

The IP address generating the event (sourceIPAddress in the JSON).

The user agent generating the event (userAgent in the JSON).

true if the event only reads information (e.g., DescribeInstances), false if
the event modifies the state (e.g., RunInstances, CreateLoadBalancer).

The S3 URI (s3://<bucket>/<key>).
The bucket name for S3 events.
The S3 key name.

The name of the EC2 instance, typically stored in the instance tags.

Kubernetes Audit Logs

Fields related to Kubernetes audit logs (listed in Table 6-11) are available
when the k8saudit plugin is configured. The k8saudit plugin is responsible
for interfacing Falco with the Kubernetes audit logs facility. The fields

exported by the plugin can be used to monitor several types of Kubernetes
activities.

N s 9 < o

~

. XX 0 »w T T T ~ W

f.ll,.[er

O~ 8 ©n ©n

S

~,

v QL ~ B

Field name

ka.
ka.
ka.
ka.
ka.

ka

e

ka.

user.name
user.groups
verb

uri

uri.param

.target.name
ka.
ka.
ka.

target.namespace
target.resource

req.configmap.nam

req.pod.container

s.1image

ka.

req.pod.container

s.privileged

ka.

S

req.pod.container

.add_capabilities

ka.

ka.
rbs

ka.

req.role.rules

req.role.rules.ve

req.role.rules

.resources

ka.
ka.

req.service.type

resp.name

Description

The name of the user performing the request
The groups to which the user belongs

The action being performed

The request URI as sent from client to server

The value of a given query parameter in the URI (e.g., when uri=/foo?
key=val, ka.uri.param[key] is val)

The target object’s name
The target object’s namespace
The target object’s resource

When the request object refers to a ConfigMap, the ConfigMap name

When the request object refers to a Pod, the container’s images

When the request object refers to a Pod, the value of the privileged
flag for all containers

When the request object refers to a Pod, all capabilities to add when
running the container

When the request object refers to a role or cluster role, the rules
associated with the role

When the request object refers to a role or cluster role, the verbs
associated with the role’s rules

When the request object refers to a role or cluster role, the resources
associated with the role’s rules

When the request object refers to a service, the service type

The response object’s name

ka.response.code The response code

ka.response.reason The response reason (usually present only for failures)

Conclusion

Congratulations, you are now a filtering expert! At this point, you should be
able to read and understand Falco rules, and you are much closer to being
able to write your own. In the next chapter, we will devote our attention to

Falco’s outputs.

Chapter 7. Falco Rules

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the
authors’ raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the seventh chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at sgrey(@oreilly.com.

Chapters 3 through 6 gave you a comprehensive view of Falco’s
architecture, describing most of the important concepts that a serious Falco
user needs to understand. The remaining piece to cover is one of the most
important ones: rules. Rules are at the heart of Falco. You’ve already
encountered them several times, but this chapter approaches the topic in a
more formal and comprehensive manner, giving you the foundation you
will need as you work through the next parts of the book.

NOTE

This chapter covers what rules are, and their syntax. The goal is to give you all the
knowledge you need to understand and use them, not to teach you to write your own.
Writing your own rules will be covered in Part IV of the book (in particular, in
Chapter 13).

Falco is designed to be easy and intuitive, and the rule syntax and semantics
are no exception. Rules files are straightforward, and you’ll be able to

mailto:sgrey@oreilly.com

understand them in no time. Let’s start by covering some basics.

Introducing Falco Rules Files

Falco rules tell Falco what to do. They are typically packaged inside rules
files, which Falco reads at startup time. A rules file i1s a YAML file that can
contain one or more rules, with each rule being a node in the YAML body.

Falco comes packaged with a set of default rules files that are normally
located in /etc/falco. The default rules files are loaded automatically if
Falco is launched with no command-line options. These files are curated by
the community and updated with every new release of Falco.

When it starts, Falco will tell you which rules files have been loaded:

$ sudo falco

Mon Jun 6 17:09:22 2022: Falco version 0.32.0 (driver version
393e7d40496793cf3d3e7890c9bbdc202263836b)

Mon Jun 6 17:09:22 2022: Falco initialized with configuration file
Jetc/falco/falco.yaml

Mon Jun 6 17:09:22 2022: Loading rules from file /etc/falco/falco_rules.yaml:
Mon Jun 6 17:09:22 2022: Loading rules from file
/etc/falco/falco_rules.local.yaml:

Often, you will want to load your own rules files instead of the default ones.
You can do this in two different ways. The first one involves using the -r
command-line option:

$ sudo falco -r book rules l.yaml -r book rules 2.yaml
Mon Jun 6 17:10:17 2022: Falco version 0.32.0 (driver version
393e7d40496793cf3d3e7890c9bbdc202263836b)

Mon Jun 6 17:10:17 2022: Falco initialized with configuration file
Jetc/falco/falco.yaml

Mon Jun 6 17:10:17 2022: Loading rules from file book_rules_1.yaml:
Mon Jun 6 17:10:17 2022: Loading rules from file book_rules _2.yaml:

And the second one involves modifying the rules_f1ile section of the
Falco configuration file (normally located at /etc/falco/falco.yaml), which
looks like this by default:

rules_file:
- Jetc/falco/falco_rules.yaml
- Jetc/falco/falco_rules.local.yaml

- Jetc/falco/rules.d

You can add, remove, or modify entries in this section to control which
rules files Falco loads.

Note that with both of these methods, you can specify a directory instead of

a single file. For example:

$ sudo falco -r ~/my rules directory

and:

rules_file:
- /home/john/my_rules_directory

This is handy because it lets you add and remove rules files by just altering
the contents of a directory, without having to reconfigure Falco.

As we mentioned, Falco’s default rules files are normally installed under
/etc/falco. This directory contains files that are critical for Falco to function
in different environments. Table 7-1 gives an overview of the most
important ones.

N s 9 < o

S TR N S I

1%

defaultruleS

o~

Filename

falco_rules.yaml

falco _rules.local.ya
ml

rules.available/app
lication_rules.yaml

k8s_audit rules.ya
ml

aws_cloudtrail _rul
es.yaml

rules.d

Description

This is Falco’s main rules file, containing the official set of system call-based
rules for hosts and containers.

This is where you can add your own rules, or create overrides to modify
existing rules, without risking polluting falco rules.yaml. Chapter 13 will
cover rule creation and overriding in detail.

This file contains rules that target common applications like Cassandra and
Mongo. Since this ruleset tends to be fairly noisy, it’s disabled by default.

This file contains rules that detect threats and misconfigurations by tapping
into the Kubernetes audit log. This ruleset is not enabled by default; to use it,
you need to enable it and configure the Falco Kubernetes Audit Events plugin.

This file contains rules that perform detections by tapping into the stream of
AWS CloudTrail logs. This ruleset is not enabled by default; to use it, you
need to enable it and configure the Falco CloudTrail plugin, as we will explain
in Chapter 11.

This empty directory is included in the default Falco configuration. This
means you can add files to this directory (or create symlinks to your rules files
in this directory) and Falco will automatically load them.

By default, Falco loads two of these files: falco rules.yaml and

falco rules.local.yaml. In addition, it mounts the rules.d directory, which
you can use to extend the ruleset with no changes to the command line or to
the configuration file.

Anatomy of a Falco Rules File

Now that you know what a rules file looks like from the outside, it’s time to
learn what’s inside it. The YAML in a rules file can contain three different
types of nodes: rules, macros, and lists. Let’s take a look at what these
constructs are and the roles they play in rules files.

https://oreil.ly/6aQEx
https://oreil.ly/1opUj

Rules

A rule declares a Falco detection. You’ve seen several examples in the
previous chapters, but as a reminder, a rule has two main purposes:

1. Declare a condition that, when met, will cause the user to be notified.

2. Define the output message that will be reported to the user when the
condition is met.

Here’s an example rule, borrowed from Chapter 6:

- rule: File Becoming Executable by Others
desc: Attempt to make a file executable by other users
condition: (evt.type=chmod or evt.type=fchmod or evt.type=fchmodat) and

evt.arg.mode contains S_IXOTH
output: attempt to make a file executable by others (file=%evt.arg.filename

mode=%evt.arg.mode user=%user.name failed=%evt.failed)
priority: WARNING
source: syscall
tags: [filesystem, book]

This rule notifies us every time there is an attempt to change the
permissions of a file to make it executable by another user.

As you can see in the preceding example, a rule contains several keys.
Some of the keys are required, while others are optional. Table 7-2 contains
a comprehensive list of the fields that you can use in a rule.

D~ QN

~N 0~ X

v oo~ R

Key

rule

desc

condition

output

Required

Yes

Yes

Yes

Yes

Description

A short sentence describing the rule and uniquely
identifying it.

A longer description that describes in more detail what
the rule detects.

The rule condition. This is a filter expression, with the
syntax described in Chapter 6, specifying the condition
that needs to be met in order for the rule to trigger.

A printf-like message that is emitted by Falco when
the rule triggers.

priority

source

enabled

tags

warn_evttypes

Yes

No

skip-if-unknown- No

filter

The priority of the alert generated when the rule is
triggered. Falco uses syslog-style priorities, and
therefore accepts the following values for this key:
EMERGENCY, ALERT, CRITICAL, ERROR, WARNING, NOTICE,
INFORMATIONAL, and DEBUG.

The data source to which the rule should be applied. If
this key is not present, the source is assumed to be
syscall. Each plugin defines its own source type that
can be used as the value for this key. For example, use
aws_cloudtratil for rules that contain
conditions/outputs based on the CloudTrail plugin fields.

A Boolean key that can optionally be used to disable a
rule. Disabled rules are not loaded by the engine and
don’t require any resources when Falco is running. If
this key is missing, enabled is assumed to be true.

A list of tags that are associated with this rule. Tags have
multiple uses, including easily selecting which rules to
load and categorizing the alerts that Falco generates.
We’ll talk about tags later in this chapter.

When set to false, this flag disables warnings about
missing event type checks for this rule. When Falco
loads a rule, in addition to validating its syntax, it runs a
number of checks to make sure that the rule meets basic
performance criteria. If you know what you are doing
and you specifically want to craft a rule that doesn’t
meet such criteria, this flag will prevent Falco from
complaining. By default, the value of this flag is true.

Setting this flag to true causes Falco to silently skip this
rule if the field is not accepted by the current version of
the rule engine. If this flag is not set or set to false,
Falco will print an error and exit when it encounters a
rule that cannot be parsed.

The key fields in the rule are condition and output. Chapter 6 talks about
them extensively, so if you haven’t done so yet we recommend that you
consult that chapter for an overview.

Macros

Macros are heavily used in the default Falco ruleset. They make it possible
to “separate” portions of rules into independent and reusable entities. You
can think of a macro as a piece of a condition that has been separated out
and can be referenced by name. To explore this concept, let’s go back to the
previous example and try to modularize it using a macro:

- rule: File Becoming Executable by Others

desc: Attempt to make a file executable by other users

condition: (evt.type=chmod or evt.type=fchmod or evt.type=fchmodat) and
evt.arg.mode contains S_IXOTH

output: attempt to make a file executable by others (file=%evt.arg.filename
mode=%evt.arg.mode user=%user.name failed=%evt.failed)

priority: WARNING

Take a look at the condition: we match the event type against three different
system calls because, well, the kernel offers three different system calls to
change file permissions. In practice, these three system calls are all flavors
of chmod, with essentially the same arguments to check. We can make the
same condition easier to read by isolating this complexity into a macro:

- macro: chmod
condition: (evt.type=chmod or evt.type=fchmod or evt.type=fchmodat)

- rule: File Becoming Executable by Others

desc: attempt to make a file executable by other users

condition: chmod and evt.arg.mode contains S_IXOTH

output: attempt to make a file executable by others (file=%evt.arg.filename
mode=%evt.arg.mode user=%user.name failed=%evt.failed)

priority: WARNING

Note how the condition is much shorter and more readable. In addition,
now we can reuse the chmod macro in other rules, simplifying all of them
and making them consistent. Even more importantly, if we ever want to add
another chmod system call that Falco should inspect, we have only one
place to change (the macro) instead of multiple rules.

Macros help us keep our rulesets clean, modular, and maintainable.

Lists

https://oreil.ly/qAdBA

Like macros, lists are heavily used in Falco’s default ruleset. Lists are
collections of items that can be included from other parts of the ruleset. For
example, lists can be included by rules, by macros, and even by other lists.
The difference between a macro and a list is that the former is actually a
condition, and is parsed as a filtering expression. Lists, on the other hand,
are more akin to arrays in a programming language.

Continuing with the previous example, an even better way to write it is the
following:

- list: chmod_syscalls
items: [chmod, fchmod, fchmodat]

- macro: chmod
condition: (evt.type in (chmod_syscalls))

- rule: File Becoming Executable by Others

desc: attempt to make a file executable by other users

condition: chmod and evt.arg.mode contains S_IXOTH

output: attempt to make a file executable by others (file=%evt.arg.filename
mode=%evt.arg.mode user=%user.name failed=%evt.failed)

priority: WARNING

What’s different this time? First, we’ve changed the chmod macro to use the
in operator instead of doing three separate comparisons. This not only is
more efficient, but it also gives us the opportunity to separate out the three
system calls into a list. The list approach is great for rule maintenance
because it allows us to isolate only the values into an array-like
representation that is clear, compact, and can easily be overridden if
necessary (more on list overriding in Chapter 13).

Rule Tagging

Tagging is the concept of assigning labels to rules. If you are familiar with
modern cloud computing environments like AWS or Kubernetes, you know
that they let you attach labels to resources. Doing that lets you manage
those resources more easily, as groups instead of individuals. Tagging

brings the same philosophy to Falco rules: it lets you treat rules as cattle
instead of pets.

This, for example, is a rule in the default Falco ruleset:

- rule: Launch Privileged Container
desc: Detect the initial process started in a privileged container.
Exceptions are made for known trusted images.
condition: >
container_started and container
and container.privileged=true
and not falco_privileged_containers
and not user_privileged_containers
output: Privileged container started (user=%user.name
user_loginuid=%user.loginuid command=%proc.cmdline %container.info
image=%container.image.repository:%container.image.tag)
priority: INFO
tags: [container, cis, mitre privilege_escalation, mitre lateral _movement]

Note how the rule has several tags, some indicating what the rule applies to
(e.g., container) and others mapping it to compliance frameworks like CIS
and MITRE ATT&CK.

Falco lets you use tags to control which rules are loaded. This is done
through two command-line flags, -T and -t. Here’s how it works:

e Use -T to disable rules with a specific tag. For example, to skip all
rules with the k8s and cis tags, you can run Falco like this:

$ sudo falco -T k8s -T cis

e Use -t for the opposite purpose; i.e., to only run the rules that have the
specified tag. For example, to only run the rules with the k8s and cis
tags, you can use the following command line:

$ sudo falco -t k8s -T cis

Both -T and -t can be specified multiple times on the command line.

You can use any tags you want to decorate your rules. However, the default
ruleset is standardized on a coherent set of tags. Table 7-3 shows what this
standard set of tags is, according to the official Falco documentation.

D~ QN

7
3
D
e
a
u
[
t
r
u
[
e
t
a
g
S
Tag Used for
file Rules related to reading/writing files and accessing filesystems
software_mgmt Rules related to package management (rpm, dpkg, etc.) or to installing new
software
process Rules related to processes, command execution, and interprocess

communication (IPC)

database Rules that have to do with databases

host Rules that apply to virtual and physical machines but nof to containers
shell Rules that apply to starting shells and performing shell operations
container Rules that apply to containers and don’t work for hosts

k8s Rules related to Kubernetes

users Rules that apply to users, groups, and identity management

network Rules detecting network activity

cis Rules covering portions of the CIS benchmark

mitre_* Rules covering the MITRE ATT&CK framework (this is a category that

includes several tags: mitre_execution, mitre_persistence,
mitre_privilege_escalation, and so on)

Declaring the Expected Engine Version

If you open a Falco rules file with a text editor, the first line you will
normally see is a statement that looks like this:

- required_engine_version: 9

Declaring the minimum required engine version is optional, but it’s very
important because it helps ensure that the version of Falco you are running
will properly support the rules inside it. Some of the fields used in a ruleset
may not exist in older versions of Falco, or a rule may require a system call
that was only added recently. Without correct versioning, a rules file might
not load or, even worse, it might load but produce incorrect results. If the
rules file requires an engine version higher than the one supported by Falco,
Falco will report an error and refuse to start.

Similarly, rules files can declare the plugin versions they are compatible
with through the required_plugin_versions top-level field. This field is
optional too; if you don’t include it, no plugin compatibility checks will be
performed, and you may see similar behavior to that just described. The
syntax of required_plugin_versions is as follows:

- required_plugin_versions:
- name: <plugin name>
version: <x.y.z>

Below required_plugin_versions you specify a list of objects, each of
which has two properties: name and version. If a plugin is loaded and a
corresponding entry in required_plugin_versions is found, then the
loaded plugin version must be semver-compatible with the version

property.

The default rules files that come prepackaged with Falco are all versioned.
Don’t forget to do the same in each of your rules files!

Replacing, Appending to, and Disabling
Rules

Falco comes prepackaged with a rich and constantly growing set of rules
that covers many important use cases. However, there are many situations
where you might find it beneficial to customize the default ruleset. For
example, you might want to decrease the noisiness of some rules, or you
might be interested in expanding the scope of some of the Falco detections
to better match your environment.

One way to approach these situations is to edit the default rules files. An
important lesson to learn is that you don’t have to do this. Actually, you
shouldn t do this—Falco offers a more versatile way to customize rules,
designed to make your changes maintainable and reusable across releases.
Let’s take a look at how this works.

Replacing Macros, Lists, and Rules

Replacing a list, macro, or rule is just a matter of redeclaring it. The second
declaration can be in the same file, or in a separate file that is loaded after
the one containing the original declaration.

https://semver.org/

Let’s see how this works through an example. The following rule detects if
a text editor has been opened as root (which, as we all know, people should
avoid doing):

- list: editors
items: [vi, nano]

- macro: editor_started
condition: (evt.type = execve and proc.name in (editors))

- rule: Text Editor Run by Root
desc: the root user opened a text editor
condition: editor_started and user.name=root
output: the root user started a text editor (cmdline=%proc.cmdline)
priority: WARNING

If we save this rule in a rules file called rulefile.yaml, we can test the rule
by loading the file in Falco:

$ sudo falco -r rulefile.yaml

The rule will trigger every time we run vi or nano as root.

Now say we want to change the rule to support a different set of text
editors. We can create a second rules file, name it editors.yaml, and
populate it in the following way:

- list: editors
items: [emacs, subl]

Note how we redefined the content of the editors list, replacing the
original command names with emacs and subl. Now we just load
editors.yaml after the original rules file:

$ sudo falco -r rulefile.yaml -r editors.yaml

Falco will pick up the second definition of editors and generate an alert
when root runs either emacs or subl, but not vi or nano. Essentially, we’ve
replaced the content of the list.

This trick works exactly the same way with macros and rules as well.

Appending to Macros, Lists, and Rules

Let’s stick to the same text editor rule example. This time, however,
suppose we want to append additional names to the list of editors instead of
replacing the full list. The mechanism is the same, but with the addition of
the append keyword. Here is the syntax:

- list: editors
items: [emacs, subl]
append: true

We can save this list in a file named additional editors.yaml. Now, if we
run the following command line:

$ sudo falco -r rulefile.yaml -r editors.yaml

Falco will detect root execution of vi, nano, emacs, and subl.

You can append (using the same syntax) to macros and rules as well.
However, there are a couple of things to keep in mind:

» For rules, it is only possible to append to the condition. Attempts to
append to other keys, like output, will be ignored.

e Remember that appending to a condition just attaches the new text at
the end of it, so be careful about ambiguities.

For example, suppose we extended the rule condition in our example by
appending to it like this:

- rule: Text Editor Run by Root
condition: or user.name = loris
append: true

The full rule condition would become:

condition: editor_started and user.name=root or user.name = loris

This condition is clearly ambiguous. Will the rule trigger only whenever the
users root or loris open a text editor? Or will it trigger when root opens a
text editor and when loris executes any command? To avoid such
ambiguities, and to make your rules files more readable, you can use
parentheses in the original conditions.

Disabling Rules

You will often encounter situations where you need to disable one or more
rules in a ruleset, for example because they are too noisy or they are just not
relevant for your environment. Falco provides different ways to do this. We
are going to cover two of them: using the command line and overriding the
enabled flag.

Disabling rules from the command line

Falco actually offers two separate ways to disable rules via the command
line. The first one, which we discussed when talking about rule tagging
earlier in this chapter, involves using the -T flag. As a refresher, you can
use -T to disable rules with the given tag. -T can be used multiple times on
the command line to disable multiple tags. For example, to skip all rules
with either the k8s tag, the cis tag, or both, you can run Falco like this:

$ sudo falco -T k8s -T cis

The second way to disable rules from the command line is by using the -D
flag. -D <substring> disables all the rules that include <substring>
in their name. Similarly to -T, -D can be specified multiple times with
different arguments.

These parameters can also be specified as a Helm chart value (extraArgs)
if you are deploying Falco via the official Helm chart.

Disabling rules by overriding the enabled flag

You might remember from Table 7-2 that one of the optional rule fields is
called enabled. As a refresher, here’s how we documented it earlier in the
chapter:

A Boolean key that can optionally be used to disable a rule. Disabled
rules are not loaded by the engine and don t require any resources when
Falco is running. If this key is missing, enabled is assumed to be true.

enabled can be turned on or off by overriding the rule with the usual
mechanism. For example, if you want to disable the User mgmt binaries
rule in /etc/falco/falco rules.yaml, you can add the following content in
/etc/falco/falco rules.local.yaml:

- rule: User mgmt binaries
enabled: false

Conclusion

You see, it wasn’t that hard! At this point, you should be able to read and
understand Falco rules, and you are much closer to being able to write your
own. We’ll focus on rule writing in Part IV of the book, and in particular in
Chapter 13. Our next step will be learning everything about Falco outputs.

Chapter 8. The Output
Framework

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the
authors’ raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the eighth chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at sgrey(@oreilly.com.

In previous chapters, you learned how Falco collects events (its input) and
how it processes them to allow you to receive important security
notifications (its output). At the end of this processing pipeline, a key piece
of Falco—the output framework—enables it to deliver those notifications
(also called alerts) to the right place. We call it a framework because its
modular design provides all you need to deliver notifications to any
destination you wish. In this chapter, you will learn how the output
framework works and how you can configure and extend it.

Falco’s Output Architecture

The output framework is the last piece of the event-processing pipeline that
we have been describing in this part of the book. Falco’s user-space
program implements the core mechanism internally, but external tools can

mailto:sgrey@oreilly.com

extend it. Its job is to deliver notifications to the correct destination on time.
Whenever an upstream event (produced by a driver, a plugin, or any other
input source supported by Falco) meets a rule’s condition, the rule engine
asks the output framework to send a notification to a downstream consumer,
which could be any other program or system in your environment (or

simply you).

The process of delivering alerts involves two distinct stages, as pictured in
Figure 8-1.

O Main thread o Workerthread 40, syslog, file,

= pmgmm HTTP, gRPC
'
= ’ v \
essage
= e DU [Dutput worker]
’
= Nonblocking . Block until a
’ Engine 9 message becomes
(]] available
))
0 U
: libsinsp :
(B¢ J]
" q 0
L :
- libscap -
))
]]

Linux kernel

Figure 8-1. The two stages of delivering notifications in Falco

In the first stage, a handler receives the event data and information about
the event-triggered rule. It prepares the notification using the provided
information and formats the textual representation according to the rule’s
output key. Then, to prevent the output destination from blocking the

processing pipeline (which runs in the main execution thread), the handler
pushes the notification into a concurrent queue.’ The push operation is
nonblocking, so the processing pipeline does not need to wait for the
notification consumer to pull the notification; it can continue to do its job
without interruption. Indeed, Falco needs to perform this stage as quickly as
possible so that the processing pipeline can process the next event.

At the other end of the queue, the output worker (which runs in a separate
execution thread) is waiting to pop notifications from the queue. This is
when the second stage begins. Once the output worker receives a
notification, it immediately fans that notification out to all configured
output channels. An output channel (or simply an output) is a part of the
output framework that allows Falco to forward alerts to a destination. Each
output channel implements the actual logic to notify a particular class of
alert consumers. For instance, some consumers want notifications written to

a file, while others prefer them to be posted to a web endpoint (see
Chapter 10).

This two-stage approach allows the processing pipeline to run without
interference from the output delivery process. However, things can still go
wrong with delivery. In particular, when delivering a notification involves
I/O operations, those may block the caller temporarily (for example, in the
event of a network slowdown) or indefinitely (e.g., when there’s no space
left on the disk). The queue in the middle of the two stages works well at
absorbing temporary slowdowns—so well that you won’t even notice them
(by default, Falco can accumulate pending notifications in the queue for up
to two seconds). But when the recipient of a notification blocks for a long
time (or indefinitely), there’s nothing that Falco can automatically do. As a
last resort, it will try to inform you about what happened by logging to the
standard error stream (stderr). When this happens, it is usually a symptom
of a misconfiguration (for example, the path to the destination is wrong) or
insufficient resources (no space left in the destination), which the user is
asked to manually fix.

Once the notification delivery process completes, Falco’s user-space
program has accomplished its purpose. It’s then up to the consumer to

https://oreil.ly/IbBik

decide what to do with the alert.

The output framework accommodates many different use cases and can take
care of many possible issues. It is also flexible enough to allow you to
receive notifications in various ways and at different destinations. The rest
of this chapter will give you details about all the available possibilities.
We’ll also take a quick look at some other tools that allow you to further
extend output processing before delivering the notifications to their final
destination. (We’ll go deeper into this in Chapter 13.)

Output Formatting

In the first stage of notification delivery, Falco applies formatting to the
notification before forwarding it to the output channel. You can customize
how Falco presents notifications to its consumers, so that you can easily
integrate them with your specific use case.

Two options in the Falco configuration file (/etc/falco/falco.yaml) control
this operation. The first controls the formatting of the timestamp:

time_format_iso 8601: false

If this option is false (the default value), Falco will display dates and times
according to the /etc/localtime settings. If it’s true (the default value when
Falco is running in a container), Falco will use the ISO 8601 standard for
representing dates and times. Note that this option controls not only output
notifications but also any other messages that Falco logs.

The second option is actually a set of options that enable JSON formatting
for the notifications. By default, JSON formatting is disabled:

json_output: false

With this setting, Falco formats the notification as a plain-text string
(including the timestamp, the severity, and the message). If it’s set to true,
Falco encloses the notification in a JSON-formatted string, including

several fields. The following two options allow you to include or exclude
some of those fields from the output:

json_include_output _property: true

If this option is enabled (the default), you will still find the plain-text
representation of the notification in the output field of the JSON
object. You can disable this option to save a few bytes if you don’t need
it.

json_include_tags property: true

If this option is enabled, you will find a tags field in the JSON object
containing an array of tags specified in the matching rule. Rules with no
tags defined will have an empty array (tags:[]) in the output. If you
disable this option, you won’t get the tags field in the JSON object.

NOTE

Despite its name, json_output is not an output channel. The json_output
configuration controls the formatting applied to notifications in the first stage of
processing—thus, it affects the content of the notifications that channels deliver. The
next section describes the available output channels.

Output Channels

Falco comes with six built-in output channels, listed in Table 8-1. We will
describe each of them in more detail in the following subsections. By
default only two channels are enabled—standard output and syslog output
—but Falco allows you to enable as many channels as you need
simultaneously.

https://oreil.ly/kBm4I

N s 9 < o

o

LR s~ 0 o -

1%

N S N~

o~

O S w /xS w ©

“ N0 I S Q@ 0

Channel Description

Standard output Sends notifications to Falco’s standard output (stdout)

Syslog output Sends notifications to the system via syslog

File output Writes notifications to a file

Program output Pipes notifications to a program’s standard input

HTTP output Posts notifications to a URL

gRPC output Allows a client program to consume notifications via a gRPC API

You configure these outputs in the Falco configuration file
(Vetc/falco/falco.yaml). Note that all the configuration snippets in this
section are part of this file.

Each output channel has at least one option called enabled, which can be
true or false. Other options may be available for specific outputs (you
will discover them soon). Furthermore, there are some global options that
can affect the functioning of all or some output channels. One such option
(which you saw in the previous section) is json_output; when this is
enabled, the alert messages will be JSON-formatted, regardless of the
output channel used. The other global options that can affect the output
channels’ behavior are listed in Table 8-2.

N s 9 < o

o

o~

0w 09 8~ 0 Qw = O = o

“— O w~

O S w Qq S

N I 3 Q8 0

Global option (with default) Description

buffered_outputs This option enables or disables full buffering in output channels. When

. false

output_timeout:

2000

outputs:
rate: 1
max_burst:
1000

disabled, Falco immediately flushes the output buffer on every alert, which
may generate higher CPU usage but is useful when piping outputs into
another process or a script. Unless you encounter an issue with the default
value, you usually won’t need to enable this option. Note that Falco’s - -
unbuffered command-line flag can override this option.

Not all output channels observe this global option. Some output channels may
implement specific buffering strategies that you cannot disable.

The value of this option specifies the duration to wait (in milliseconds) before
considering the delivery notification deadline exceeded.

When the notification consumer blocks and the output channel cannot deliver
an alert within the given deadline, Falco reports an error indicating which
output is blocking the notifications. Such an error indicates a misconfiguration
issue or I/O problem in the consumer that Falco cannot recover.

These options control the notification rate limiter so that output channels do
not flood their destinations. The rate limiter implements a token bucket
algorithm. To send a notification, the system must remove a token from the
bucket. rate sets the number of tokens the system gains per second, and
max_burst sets the maximum number of tokens in the bucket.

With the defaults, Falco can send up to 1,000 notifications in a row; then it
must wait for additional tokens to be added to the bucket, which happens at
the rate of 1 token per second. In other words, once the bucket has been
emptied, notifications are rate-limited to one per second.

TIP

Although not strictly related to the output mechanism, other Falco settings may affect
what you will receive in the output. For example, the configuration priority:
<severity> controls the minimum rule priority level to load and run and the

command-line option -t <tag> allows you to load only those rules with a specific tag.

In those cases, clearly, you won’t get any output regarding rules that Falco does not
load. In general, any rules-related option or configuration could indirectly affect the
output.

Now that you’ve learned what the output channels are and what settings can
change their behavior, let’s go through each in turn.

Standard Output

Standard output (stdout_output in the configuration file, enabled by
default) is Falco’s most straightforward output channel. When it is enabled,
Falco will print a line to standard output for each alert. This allows you to
see alert notifications when manually running Falco from a console or when
looking at a container or Kubernetes Pod log. The only option specifically
available for this output channel is enabled (which can be either true or
false). However, it’s also affected by the global buffering option,
buffered_outputs. When the outputs are buffered, the stdout stream will
be fully buffered or line-buffered if the stream is an interactive device (such
asa TTY).

Syslog Output

The syslog output channel (syslog_output in the configuration file, also
enabled by default) allows Falco to send a syslog message for each alert. As
with standard output, the only option specifically available for this output
channel is enabled (which can be either true or false). When enabled,
Falco sends messages to syslog with a facility of LOG_USER? and a severity
level equal to the priority value defined by the rule.

Depending on the syslog daemon you are using, you can read those
messages using commands like tail -f /var/log/syslog or
journalctl -xe. The actual message format depends on the syslog
daemon, too.

File Output

If you enable file output, Falco will write each alert to a file. The default
configuration for this output channel is:

file_output:
enabled: false
keep_alive: false
filename: ./events.txt

The filename option allows you to specify the destination file to which
Falco will write. It will create the file if it does not yet exist and will not try
to truncate or rotate the file if it exists already.

With keep_alive disabled (the default), Falco will open the file for
appending, write the message, and then close the file for each alert. If
keep_alive is set to true, Falco will only open the file once before the
first alert and will keep it open for all subsequent alerts. Whether
keep_alive is enabled or not, Falco closes and reopens the file when it
receives a SIGUSR1 signal. This feature is handy if you’d like to use a
program to rotate the output file (for example, logrotate).

Finally, writing to a file is generally buffered unless you disable the global
buffering option. Closing the file will flush the buffer.

Program Output

The program output is very similar to the file output, but, in this case Falco
will write the content of each alert to the standard input of a program you
specify in the configuration file. The default configuration for this output
channel is:

program_output:

enabled: false

keep_alive: false

program: "jq '{text: .output}' | curl -d @ -X POST
https://hooks.slack.com/services/XXX"

The progranm field allows you to specify the program the alerts will be sent
to. Falco runs the program via a shell, so you can specify a command
pipeline if you wish to add any processing steps before delivering the
messages to the program. This field’s default value shows a nice example of
its usage: when executed, that one-liner posts the alert to a Slack webhook
endpoint. (However, using Falcosidekick would be a better option; see
Chapter 12.)

If keep_alive is set to false, Falco restarts the program and writes the
content of the alert to its standard input each time it has a notification to
deliver. If keep_alive is set to true, Falco starts the program once (right
before sending the first alert) and keeps the program pipe open for
delivering subsequent alerts.

Falco closes and reopens the program when it receives a SIGUSR1 signal.
However, the program runs in the same process group as Falco, so it gets all
of the signals that Falco receives. It’s up to you to override the program
signal handler if you need to.

Buffering is supported via the global option. When Falco closes the
program, it also flushes the buffer.

HTTP Output

When you need to send alerts over an HTTP(S) connection, the best choice
is to use the HTTP output. Its default configuration is straightforward:

http_output:
enabled: false
url: http://some.url

Once enabled, the only other configuration you need to specify is the url of
your endpoint. Falco will make an HTTP POST request to the specified
URL for each alert. Both unencrypted HTTP and secure HTTPS endpoints
are supported. Buffering for this output channel is always enabled (even if
you disable the global buffering option).

The HTTP output channel is preferred when you use Falcosidekick; it takes
Falco’s alerts and forwards them in fan-out style to many different
destinations (more than 50 are available at the time of writing). If you want
Falco to forward alerts to Falcosidekick, apply this Falco configuration:

json_output: true
json_include output_property: true
http_output:

enabled: true

url: "http://localhost:2801/"

Note that this configuration assumes you already have Falcosidekick
running and configured to listen to localhost:2801; change it accordingly
if your setup is different. You can find details about configuring
Falcosidekick in Chapter 12 and in its online documentation.

gRPC Output

The gRPC output is the most sophisticated output channel. It allows greater
control than the others over alert forwarding and full granularity in the
information received. This output channel is for you if you’d like to send
alerts to an external program connected via Falco’s gRCP API. Its default
configuration is:

grpc_output:
enabled: false

As you can see, it’s disabled by default—and before you enable it, there’s
something you should consider. Falco comes with a gRPC server that
exposes the API. You will need to enable both the gRPC server and the
gRPC output (we will show you how to do that in a moment). The API

https://oreil.ly/uUQBR
https://grpc.io/

provides several gRPC services, only some of which are related to the
gRPC output. One service allows you to pull all pending alerts. Another
allows you to subscribe to a stream of alerts. Client programs can decide
which implementations best fit their needs. In both cases, when the gRPC
output is enabled, Falco uses an internal queue to temporarily store alerts
until the client program consumes them. This means you should not enable
the gRPC output if there’s no client program set up to consume the alerts;
otherwise, the internal queue may grow indefinitely. The global buffering
option does not affect this output channel.

With that in mind, to make this output channel work, the first thing you
have to do is to enable the gRPC server. It supports two binding types: over
a Unix socket and over the network with mandatory mutual TLS
authentication.

Here’s how to enable the gRPC server over a Unix socket:

grpc:
enabled: true
bind_address: "unix:///var/run/falco.sock"
threadiness: 0

And here’s how to enable it over the network with mandatory mutual TLS
authentication:

grpc:
enabled: true
bind_address: "0.0.0.0:5060"
threadiness: 0
private _key: "/etc/falco/certs/server.key"
cert_chain: "/etc/falco/certs/server.crt"
root_certs: "/etc/falco/certs/ca.crt

Both binding types offer the same gRPC functionalities, so you can choose
the one that satisfies your needs. Once you have enabled the gRPC server,
the next step is to enable the gRCP output:

grpc_output:
enabled: true

Finally, you will have to configure your client program to connect to the
Falco gRPC API. How this is done depends on the program you are using.
The Falcosecurity organization provides two programs that can connect to
this output (see Chapter 2): falco-exporter, which connects to the Falco
gRPC API to export metrics consumable by Prometheus (more on this in
Chapter 12), and the event-generator, which can optionally connect to the
Falco gRPC API to test whether fake events are actually processed (helpful
when developing integration tests). You can also implement your own
program. The Falcosecurity organization provides SDKs that allow you to
create gRPC client programs for Falco easily in several programming
languages—for example, client-go for Golang, client-rs for Rust, and client-
py_for Python. You can find more information about developing with the
Falco gRPC API in Chapter 14.

Last but not least, here is an extract from the proto-definition of the
message that Falco sends via the gRCP API:

// The ‘response’ message is the representation of the output model.
// It contains all the elements that Falco emits in an output along
// with the definitions for priorities and source.
message response {

google.protobuf.Timestamp time = 1;

falco.schema.priority priority = 2;

falco.schema.source source deprecated = 3 [deprecated=true];

string rule = 4;

string output = 5;

map<string, string> output_fields = 6;

string hostname = 7;

repeated string tags = 8;

string source = 9;

The response message includes the already formatted alert string (which
you will find in the output field) as well as all the component pieces of
information, split across various fields. The client program can assemble
and process them in any way it needs, which is very useful if you want to
build your own application on top of Falco.

https://oreil.ly/FN9gE
https://oreil.ly/4MHw1
https://oreil.ly/HXPKL
https://oreil.ly/XdgVp
https://oreil.ly/A64Dh

Other Logging Options

So far we’ve described the core part of the output framework. Now let’s
look at a few options to help you in troubleshooting. Like most
applications, Falco can output debugging information and errors. Those
informative messages are about the functioning of Falco itself and are not
its primary output.

Falco implements various logging messages internally. They can vary from
one release to another. A common example of this logging is the initial
information that Falco prints out when it starts. Another, less common case
is when Falco informs you that it was not able to load the driver:

Mon Dec 20 14:00:23 2021: Unable to load the driver.

NOTE

The term logging does not refer to the process of outputting security notifications. The
log messages discussed in this section are not security alerts. Logging options do not
affect notification processing in any way. Also, since these log messages are not
notifications, Falco does not output them through the output channels. Although you
might see the usual notifications interleaved with log messages when running Falco in a
terminal, keep in mind that they are different.

Falco outputs these messages via the standard error stream and sends them
to syslog. You can configure Falco to discard some messages based on their
severity level. Table 8-3 lists the logging options you can configure in
Falco’s configuration file (/etc/falco/falco.yaml).

https://oreil.ly/yatpB

N s 9 < o

o

N

G N S >

“— O w~

K S~ U O -

1%

T~ nt N}

~0Q 0Q © ~Y—Q I N

R S

Logging option (with default) Description

log_stderr: true Ifenabled, Falco sends log messages to the stderr.

log_syslog: true Ifenabled, Falco sends log messages to syslog. Note that this option is not
related to the syslog output and does not affect it.

log_level: info This option defines the minimum log level to include in logs: emergency,
alert, critical, error, warning, notice, info, or debug. Note that these
values, although similar, are not rule priority levels.

Conclusion

This chapter concludes Part II of this book. At this point, you should have a
solid understanding of Falco’s architecture and its inner workings. Your
familiarity with the processing pipeline’s data flow, ending with the output
framework, will allow you to use Falco in a variety of ways. For example,
you can view security notifications in your favorite dashboard, or even
create a response engine (a mechanism that takes action when a specific
event occurs) on top of Falco. To discover more use cases, use your
imagination—and continue reading this book.

The next level up is real-world use cases, so Part III is all about running
Falco in production. As always, we will guide you through each step.

1 A concurrent queue is a way of implementing a queue data structure that multiple running
threads can safely access in parallel. The pop and push operations are typical actions that a
queue supports (respectively, to enqueue and dequeue an item). Most implementations allow
performing those operations in either blocking or nonblocking fashions.

2 In the syslog protocol, the facility value determines the function of the process that created
the message. LOG_USER is intended for messages generated by user-level applications.

https://oreil.ly/NWtzd

Part lll. Running Falco in
Production

Chapter 9. Installing Falco

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the
authors’ raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the ninth chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at sgrey(@oreilly.com.

Welcome to Part III of this book, which will walk you through using Falco
in the real world. Now that you know how Falco and its architecture work,
the next step is to start using it to protect your applications and systems. In
this chapter, you will learn what you need to know to install Falco in
production. We will show you different scenarios and common best
practices so that you can find the right instructions for your use case.

We’ll start by giving you an overview of common usage scenarios, then
we’ll describe different installation methods for each of them. We strongly
recommend reading about all of the installation methods, even if you need
only some of them, to get a complete picture of the possibilities and choose
which fits your needs best.

Choosing Your Setup

The Falco Project officially supports three ways to run Falco in production:

mailto:sgrey@oreilly.com

e Running Falco directly on a host
e Running Falco in a container
» Deploying Falco to a Kubernetes cluster

Each option has a different installation method, and there are a few
important differences between the first option and the others. Installing
Falco directly on the host is your only choice when your environment does
not include a container runtime or Kubernetes. It is also the most secure
way to run Falco, because it’s isolated from the container system (and thus
difficult to breach in case of compromise). However, installing Falco
directly on the host is usually the most difficult solution to maintain. It’s
also not always possible (for example, when your applications live in a
managed Kubernetes cluster and you don’t have full access to the host
machines). The other options are usually more straightforward and easier to
manage. Especially if your applications run on a Kubernetes cluster,
deploying Falco to Kubernetes is a common choice. Consider the pros and
cons of each and your requirements before making your choice.

Before installing Falco with any of these methods, you need to decide how
you’re going to use Falco, which can have a significant impact on the
installation process and configuration. The two most common scenarios are
monitoring syscalls and working with data sources provided by plugins.

The default scenario is instrumenting the system to monitor syscalls. In this
case you will need to deploy a Falco sensor on each machine or cluster
node, as well as installing a driver on each underlying host.

When you work with data sources provided by plugins, you will likely need
to install only one Falco sensor (or one for each event producer), and you
won’t need a driver. Although there may be small differences in the actual
setup of each data source, for simplicity we can treat this as a single
installation scenario because the overall process is very similar. Generally,
this latter scenario has fewer requirements and is simpler to implement.

If you need to satisfy more than one scenario at the same time, you will
need more Falco installations. You can then aggregate the notifications

coming from each sensor by using other tools, like Falcosidekick (discussed
in Chapter 12).

Your final setup will depend on your needs and choices. The following
sections provide instructions for each installation method in the two
scenarios mentioned above (monitoring syscalls and working with data
sources provided by plugins).

Installing Directly on the Host

Installing Falco directly on a host is a straightforward task—you learned the
essential aspects in Chapter 2. This installation method is mainly intended
for the default scenario where Falco uses system calls to secure and monitor
a system, so it also installs the driver and configures Falco to use it. (In
Chapter 10, we’ll discuss how to change the Falco configuration and set it
up for other data sources.)

This method installs the following:

e The user-space program falco

The driver (the kernel module, by default)

The default configuration file and the default ruleset files in /etc/falco

The falco-driver-loader utility (you can use this to manage the driver)

A few bundled plugins (these may vary from version to version)

To install Falco, you will use one of the following artifacts provided by
Falco’s “Download” page:

e .rpm package
* .deb package
e .tar.gz (binary) package

https://oreil.ly/sOLzu

You should use one of the first two packages if you intend to install Falco
via a compatible package manager; otherwise, use the binary package. Read
on for more details.

NOTE

The following subsections include various commands that you need to run on your
system. Ensure that you have sufficient privileges to execute them (for example, using
sudo).

Using a Package Manager

This installation method is for Linux distributions with a package manager
that supports .deb or .rpm packages. The setup process for a .deb or .rpm
package will also install a systemd unit to use Falco as a service on your
system, as well as the kernel module—the default driver—via Dynamic
Kernel Module Support (dkms).

apt and yum are the most popular package managers that allow installing,
respectively, .deb and .rpm packages. If you’re using a different package
manager that supports .deb or .rpm packages, the installation procedure will
be very similar, though the exact instructions may vary. Refer to its
documentation for further details.

Using apt (.deb package)

apt 1s the default package manager for Debian and Debian-based
distributions like Ubuntu. It allows you to install software applications
distributed as .deb packages. To install Falco using apt, you first need to
trust The Falco Project’s GPG key and configure the apt repository that
holds Falco packages:

$ curl -s https://falco.org/repo/falcosecurity-3672BA8F.asc |
apt-key add -
$ echo "deb https://download.falco.org/packages/deb stable main"
| tee \

-a /etc/apt/sources.list.d/falcosecurity.list

https://oreil.ly/Egkoo

Then update the apt package list:

$ apt-get update -y

Since this installation method will also install Falco’s kernel module, you
must install the Linux kernel headers as a precondition:

$ apt-get -y install linux-headers-$ (uname -r)

Finally, install Falco:

$ apt-get install -y falco

Using yum (.rpm package)

yum is a command-line utility for Linux distributions that use the RPM
Package Manager, such as CentOS, RHEL, Fedora, and Amazon Linux. It
allows you to install software applications distributed as .rpm packages.
Before installing Falco with yum, you must ensure that the make package
and the dkms package are present on your system. You can check that by
running:

$ yum list make dkms

If they are not present, install them:

$ yum install epel-release
$ yum install make dkms

Next, trust The Falco Project’s GPG key and configure the RPM repository
that holds Falco packages:

$ rpm --import https://falco.org/repo/falcosecurity-3672BA8F.asc
$ curl -s -o /etc/yum.repos.d/falcosecurity.repo \
https://falco.org/repo/falcosecurity-rpm.repo

https://oreil.ly/t5WaG

Since this installation method will also install Falco’s kernel module, you
must install the Linux kernel headers as a precondition:

$ yum -y install kernel-devel-$ (uname -r)

TIP

If yum -y install kernel-devel-$(uname -r) does not find the kernel headers
package, run yum distro-sync and then reboot the system. After the reboot, try the
preceding command again.

Finally, install Falco:

$ yum -y install falco

Completing the installation

You should now have the kernel module installed via dkms and a systemd
unit installed to run Falco as a service.

Before you start using Falco, you need to enable the Falco systemd service:

$ systemctl enable falco

Your installation is now complete. The service will automatically start
running at the next reboot. If you want to start it immediately, just run:

$ systemctl start falco

From now on, you can manage the Falco service through the functions
provided by systemd.
Switching to the eBPF probe

Falco packages use the kernel module by default, and this is usually the best
choice when installing Falco directly on the host. However, if you have

particular requirements or other reasons not to use the kernel module, you
can easily switch to the eBPF probe.

First, make sure you have an eBPF probe installed on your system. You can
install it using the falco-driver-loader script, as explained in “Managing the
Driver”.

Then you need to edit the systemd unit file, located at
/usr/lib/systemd/user/falco.service (the actual path may vary depending on
your distro). You can use systemctl edit falco to modify it. You need
to add an option to set the FALCO_BPF_PROBE environment variable in the
[Service] section of that file. Also, in the same section, comment (or
remove) the ExecStartPre and ExecStartPost options, so the Falco
service will not load the kernel module anymore. The changes are
highlighted in the following excerpt from the falco.service file:

[Unit]
Description=Falco: Container Native Runtime Security
Documentation=https://falco.org/docs/

[Service]

Type=simple

User=root

Environment='FALCO BPF PROBE="""
#ExecStartPre=/sbin/modprobe falco
ExecStart=/usr/bin/falco --pidfile=/var/run/falco.pid
#ExecStopPost=/sbin/rmmod falco

Once you’re done, don’t forget to restart the Falco service:

$ systemctl restart falco

Falco should now start using the eBPF probe.

Using a plugin

Falco packages come configured for the syscalls instrumentation scenario,
so the included systemd unit loads the kernel module when Falco starts.
However, if you’re not using syscalls, you don’t need to load the driver. As

described in the previous section, to prevent the Falco service from loading
the kernel module, edit the /usr/lib/systemd/user/falco.service file and
remove (or comment out) the ExecStartPre and ExecStartPost options.
Optionally, you can also configure the service to run Falco with a less
privileged user by modifying the value of the User option.

Next, you’ll need to configure Falco to use the plugin of your choice (we’ll
explain how to do this in Chapter 10) and restart the Falco service. Falco
will then run using the new configuration.

Without Using a Package Manager

Installing Falco without using a package manager is quick and easy. This
installation method is intended for distributions that do not support a
compatible package manager. We walked through the steps in detail in
Chapter 2, but we’ll give you a short refresher here.

All you need to do is grab the link to the latest available version of the
binary package from the Falco “Download” page, and download it into a
local folder:

$ curl -L -0 \
https://download. falco.org/packages/bin/x86 64/falco-0.32.0-
x86_64.tar.gz

Then extract the package and copy its content to your filesystem’s root:

$ tar -xvf falco-0.32.0-x86_64.tar.gz
$ cp -R falco-0.32.0-x86_64/* /

Finally, if you’re planning to use system calls as your data source, install
the driver manually before using Falco (you’ll find instructions in the
following section). You don’t need to install the driver if you want to use a
plugin. Also note that the binary package does not provide a systemd unit or
any other mechanism to run Falco when your system starts automatically,

so whether to execute Falco or run it as a service is entirely up to you.

https://oreil.ly/HEvdB

Managing the Driver

If you use syscalls as a data source, you will likely need to manage the
driver. If you installed Falco without a package manager, you’ll have to
install the driver before using Falco manually. All the available packages
provide a helpful script called falco-driver-loader (introduced in Chapter 2)
that you can use for this purpose. If you followed the instructions earlier in
this chapter, you should already have it installed on your system.

Our suggestion is to familiarize yourself with the script by using - -help to

get its command-line usage. To do that, just run:

$ falco-driver-loader --help

The script allows you to perform several actions, including installing a
driver (either the kernel module or the eBPF probe) by compiling it or
downloading it. It also allows you to remove a previously installed driver.

If you run the script without any options:

$ falco-driver-loader

by default it will try to install a kernel module via dkms. To be precise, it
will first try to download a prebuilt driver, if one is available for your
distribution and kernel version. Otherwise, it will try to compile the driver
locally. The script will also inform you if any required dependencies are
missing (for example, if dkms or make is not present on your system).

If you want to install the eBPF probe instead, run:

$ falco-driver-loader bpf

Running Falco in a Container

The Falco Project provides several container images that you can use to run
Falco in a container. Although the Falco container images described in this
section will work with almost any container runtime, we’ll use Docker in

our examples for simplicity. If you want to use a different tool, including
Kubernetes, you can apply the same concepts. Even if you are only
interested in deploying Falco on Kubernetes, we still advise you to read this
section as it presents some essential concepts.

Table 9-1 lists the main available images, which you can get from the Falco
“Download” page. These images contain all the necessary components to
install the driver and run Falco. Later in this section, we’ll discuss how to
use them to support some common use cases.

clbr://internal.invalid/book/OEBPS/Images/#falco_container_images_hosted_by_the_do
https://oreil.ly/rkZoV

N s 9 < o

(=)

~

S T B SR

U O & w U m © U M~ S T U ©u O un

>~

SN Q@ X0 O o o

S~

=0 0N N

= N N~

Image name

falcosecurity/falco

Description

This is the default Falco image. It contains Falco, the falco-driver-loader
script, and the building toolchain (required to build the driver on the fly). The
entry point of this image will call the falco-driver-loader script to

automatically install the driver on the host before running Falco in the
container.

falcosecurity/falco- This image is similar to the default one, but it will not run Falco. The image

driver-loader entry point will only run the falco-driver-loader script. You can use it when
you want to install the driver at a different moment or when using the
principle of least privilege (see ‘“‘Least privileged mode”). Since this image
alone cannot run Falco, use it in combination with another image, like
falcosecurity/falco-no-driver.

falcosecurity/falco- This alternative to the default image only contains Falco, so it cannot install
no-driver the driver. Use it when using the principle of least privilege or when your data
source does not need a driver (for example, when using a plugin).

Different tags are available for each distributed image. Tags allow you to
choose a specific Falco version: for example, falcosecurity/falco:0.32.0
contains Falco’s 0.32.0 release. The :latest tag points to the latest released
version of Falco.

If you want to experiment with a not-yet-released version of Falco, the
:master tag ships the latest available development version. An automatic
process builds and publishes images with this tag every time new code
changes are merged into the master branch of Falco’s GitHub repository.
This means it 1s not a stable release—don’t use it in production unless you
want to try an experimental feature or debug a particular issue. Generally,
we suggest always using the .latest tag, since it ships the latest Falco
version and ruleset updates.

Next, we will describe how to use these images in the two common
scenarios we’ve been discussing: syscall instrumentation, which requires a
driver, and using a plugin as a data source, which does not.

Syscall Instrumentation Scenario

A Falco driver (either a kernel module or an eBPF probe) installed directly
on the host is required for syscall instrumentation. Falco needs to run with
enough privileges to interact with the driver; of course, if you want to use a
container image to install the driver, that image needs to run with full
privileges.

The Falco Project provides two modes for installing the driver on the fly
and then running Falco in a container. The first and simplest mode uses just
one container image with full privileges. The second uses two images: one
image that temporarily runs with full privileges just to install the driver, and
another image that then runs Falco with lesser privileges. The second
approach allows enhanced security since the long-running container gets a
restricted set of privileges, making life harder for a possible attacker. We
recommend using least privileged mode to run Falco in a container.

Fully privileged mode

Running Falco in Docker with full privileges is quite straightforward. You
just have to pull the default image:

$ docker pull falcosecurity/falco:latest

Then run Falco with the following command:

$ docker run --rm -i -t \
--privileged \
-v /var/run/docker.sock:/host/var/run/docker.sock \
-v /dev:/host/dev \
-v /proc:/host/proc:ro \
-v /boot:/host/boot:ro \
-v /lib/modules:/host/lib/modules:ro \
-v /usr:/host/usr:ro \
-v /etc:/host/etc:ro \
falcosecurity/falco:latest

This command will install the driver on the fly before running Falco. The
container image uses the kernel module by default. If you want to use the
eBPF probe instead, just add the -e FALCO_BPF_PROBE="" option and
remove -v /dev:/host/dev (only the kernel module requires /dev).

As you can see, aside from the - -privileged option, the preceding
command mounts a set of paths from the host into the container (each -v
option is a bind mount).

Specifically, the -v

[/var/run/docker.sock: /host/var/run/docker.sock option shares the
Docker socket, so Falco can use Docker to obtain container metadata (as
described in Chapter 5, where we discussed Falco’s data enrichment
techniques). You can add similar options for each container runtime
available on your system. For example, if you also have containerd, include
-V
/run/containerd/containerd.sock:/host/run/containerd/containe
rd.sock.

Falco requires sharing /dev and /proc to interface with the driver and the
system, respectively. Other shared paths are needed to install the driver.

Least privileged mode

This running mode follows the principle of least privilege for enhanced
security. Although this mode is the recommended way to run Falco in a
container, it might not necessarily work for all systems and configurations.
We advise you to give it a try anyway and fall back to the fully privileged
mode only if this does not fit your environment.

As noted, this approach uses two different container images. The first step,
which requires full privileges, is to install the driver using the
falcosecurity/falco-driver-loader image. You’ll need to do this before
running Falco for the first time, and if you want to upgrade the driver at any
point. (Alternatively, as explained earlier, you can install the driver directly
on the host using the falco-driver-loader script shipped with the binary
package. If you did so, skip this step.)

To install the driver using a container image, pull the image first:

$ docker pull falcosecurity/falco-driver-loader:latest

Then run the installation command:

$ docker run --rm -i -t \
--privileged \
-v /root/.falco:/root/.falco \

https://oreil.ly/PKosx

-v /proc:/host/proc:ro \

-v /boot:/host/boot:ro \

-v /lib/modules:/host/lib/modules:ro \
-v /usr:/host/usr:ro \

-v /etc:/host/etc:ro \
falcosecurity/falco-driver-loader:latest

This command installs the kernel module by default. If you want to use the
eBPF probe instead, just add the -e FALCO_BPF_PROBE="" option.

The last step 1s to run Falco. Since the driver is already installed, you will
just need to use the falcosecurity/falco-no-driver image. So, pull it first:

$ docker pull falcosecurity/falco-no-driver:latest

Then run Falco:

$ docker run --rm -i -t \
-e HOST ROOT=/ \
--cap-add SYS_PTRACE --pid=host $(ls /dev/falco* | xargs -I
{}
$ echo --device {}) \
-v /var/run/docker.sock:/var/run/docker.sock \
falcosecurity/falco-no-driver:latest

If you use another container runtime, customize this command by adding a
-v option accordingly.

Finally, there are some caveats when using the eBPF probe. You cannot use
least privileged mode unless you have at least kernel version 5.8. This is
because, with previous kernel versions, loading the eBPF probe required the
- -privileged flag. If you are running a kernel version equal to or greater
than 5.8, you can use the SYS_BPF capability to overcome this issue by
customizing the command as follows:

$ docker run --rm -i -t \
-e FALCO_BPF PROBE=""
-e HOST ROOT=/ \
--cap-add SYS_PTRACE --cap-add SYS_BPF -pid=host \
-v /root/.falco:/root/.falco \

-v /var/run/docker.sock:/var/run/docker.sock \
falcosecurity/falco-no-driver:latest

Note that on systems with the AppArmor Linux Security Module (LSM)
enabled, you will also need to pass the following:

--security-opt apparmor:unconfined

TIP

Depending on the Falco version you are using and your environment, you might need to
customize the commands described in this section; refer to the online documentation.

Plugin Scenario

When you’re using a plugin as your data source there’s no need to install a
driver, nor will Falco need full privileges to run, so we recommend you use
the falcosecurity/falco-no-driver image for this scenario. Whatever
container image you choose, the default Falco configuration it contains
won’t work out of the box; you’ll have to give Falco the required
configuration for the plugin. You can do that by using an external
configuration file and mounting it in the container.

As a preparation step, you’ll have to create a local copy of falco.yaml and
modify it according to your plugin configuration. We will explain how to do
that in the next chapter.

Once you’ve prepared your custom falco.yaml, to run Falco, use the
following command:

$ docker run --rm -i -t \
-v falco.yaml:/etc/falco/falco.yaml \
falcosecurity/falco-no-driver:latest

If you want to use a plugin not shipped in the default Falco distribution, you
will have to mount the plugin file and its rules file in the container, too. For

https://oreil.ly/TXTge
https://oreil.ly/E31wy

example, to mount /ibmyplugin.so and myplugin_rules.yaml, add the
following options to the preceding command:

-v /path/to/libmyplugin.so:/usr/share/falco/plugins/1libmyplugin.so
-v /path/to/myplugin_rules.yaml:/etc/falco/myplugin_rules.yaml

Deploying to a Kubernetes Cluster

One of the most common Falco use cases is securing clusters, so deploying
Falco to Kubernetes is perhaps the most important installation method to be
aware of. The Falco Project recommends two approaches for this:

Helm

The first installation method uses Helm, a very popular tool to install
and manage software built for Kubernetes. The Falco community
provides and maintains a Helm chart for Falco and other tools that
integrate with Falco. Installing Falco using the provided chart is
straightforward and mostly automatic.

Kubernetes manifest files

The other installation method, geared toward flexibility, 1s based on a
set of Kubernetes manifest files. These files provide default installation
settings which users can customize based on their needs. Although this
approach requires a bit more effort, it permits the installation of Falco
on virtually any Kubernetes cluster without the need for extra tools.

Both approaches are solid, and you should select the one that best suits your
environment and your organization’s requirements. In the following
subsections, we will walk you through each of them. The only requirement
1s having a Kubernetes cluster installed and running.

NOTE

The installation methods for Kubernetes described in this section use the default Falco
container image discussed in “‘Running Falco in a Container”.

Using Helm

If you prefer a fully automated installation process or are already using
Helm in your environment, this installation method is for you. Having Helm
installed is a prerequisite; for instructions, see the online documentation.

Falco’s Helm chart will add Falco to all nodes in your cluster using a
DaemonSet. Then each deployed Falco Pod will try to install the driver on
its own node. That’s the default configuration that reflects the most
common scenario, syscall instrumentation.

TIP

Falco Pods internally use falco-driver-loader, which tries to download a prebuilt driver;
failing that, it will build the driver on the fly. Usually, no action is required. If you notice
that the Falco Pods are continuously restarting after being deployed, the process was
probably unable to install the driver. This issue usually happens when a prebuilt driver is
unavailable for your distribution or kernel and no kernel headers are available on the
host. To build the driver, kernel headers must be installed on the host. You can fix the
issue by manually installing the kernel headers and then deploying Falco again.

Helm uses the Kubernetes context provided by kubectl to access your
cluster. Before installing Falco with Helm, ensure that your local
configuration points to the proper context. You can check that by running:

$ kubectl config current-context

If the context is not pointing to your targeted cluster or kubectl cannot
access your cluster, you will have to address this issue. Otherwise, you can
proceed with the next step.

https://helm.sh/
https://oreil.ly/YCiLB
https://oreil.ly/S7tqe

Before installing the chart, add Falco’s Helm repository so that your local
Helm installation can find the Falco chart:

$ helm repo add falcosecurity
https://falcosecurity.github.io/charts

Running this command is usually a one-time operation. To get the latest
information about the Falco chart, use:

$ helm repo update

Execute this command whenever you want to install and update Falco with
Helm.

The next and final step is actually to install the chart by running:

$ helm install falco falcosecurity/falco

The chart installs the kernel module by default. If you want to use the eBPF
probe instead, just append - -set ebpf.enabled=true to this command.

And you’re done! After a while, Falco’s Pods will show up in your cluster.
You can use the following command to check whether they are ready:

$ kubectl get all

The chart installs Falco for the default scenario (syscall instrumentation), as
per the default settings. The Helm installation process for other scenarios is
very similar; just provide the appropriate configuration. We will discuss
how to customize your Falco deployment in Chapter 10. You can find more
information about Falco’s chart configuration in its online documentation.

Using Manifests

Kubernetes manifests are JSON or YAML files (mainly YAML) that
contain the specifications for one or more Kubernetes API objects and
describe your application and its configurations. The kubectl command-line

https://oreil.ly/pcJWP

utility lets you deploy your workload in Kubernetes using these files.
Projects often provide almost-ready-to-use example manifests, but you’ll
usually need to adapt them to your needs.

Since Falco supports very different scenarios and environments, The Falco
Project does not officially provide manifests for all use cases. However, for
the syscall instrumentation scenario, you can use the Falco example
manifests’ (listed in Table 9-2) as a starting point to make your customized
manifests.

https://oreil.ly/qWW1w

N s 9 < o

(=)

o~

CROR S E e~ v

S O R m YV ! om S m o~ Yy

“ O

S 0~ Ny

Filename

daemonset.yaml!

configmap.yaml

Serviceaccount.yam
[

clusterrole.yaml

clusterrolebinding.
yaml

Description

Specifies a DaemonSet so that a copy of the Falco Pod will run on each node
(required by the syscall instrumentation scenario). The Pod specification uses
the falcosecurity/falco container image. It also includes all settings needed to
run the image in this scenario, similar to those described in “‘Running Falco in
a Container”.

Specifies a ConfigMap containing the default falco.yaml file and rules files.
Modify it according to your needs.

Specifies a ServiceAccount for running Falco’s Pods. Falco requires this to
talk with the Kubernetes API. You usually don’t need to alter it, unless you
want to change the service account name.

Specifies a ClusterRole, including the role-based access control (RBAC)
authorizations required by Falco to talk with the Kubernetes API. Don’t
change the list of permissions needed, or Falco will not enrich the Kubernetes
metadata correctly.

Specifies a ClusterRoleBinding that grants the permissions defined in
clusterrole.yaml to the service account defined in serviceaccount.yaml. You
usually won’t need to change this, unless you’ve changed the service account
or the cluster role name in the other files.

Once you’ve modified the manifest files according to your needs, to apply
them to Kubernetes (that is, to deploy Falco to Kubernetes) just run the
following command:

$ kubectl apply \
-f ./templates/serviceaccount.yaml \
-f ./templates/clusterrole.yaml \
-f ./templates/clusterrolebinding.yaml \

https://oreil.ly/9YwAV
https://oreil.ly/WRtRb
https://oreil.ly/vTAdd
https://oreil.ly/sXkl9
https://oreil.ly/gWjN4
https://oreil.ly/PTEcU

-f ./templates/configmap.yaml \
-f ./templates/daemonset.yaml

Falco’s Pods should show up in your cluster after a while. To check whether
they are ready, use:

$ kubectl get all

If everything went well, Falco is now up and running in your production
cluster—and you have learned how to customize your Falco deployment.
Congratulations!

Conclusion

This chapter introduced the different installation methods available for
Falco and explained the difference between the two most common
installation scenarios. However, in some cases, your installation will need
specific configurations or customizations. The next chapter gives you all the
complementary information you need to finally run Falco in production and
completely control your Falco installation.

1 The actual URLSs of the Falco manifest example files for Kubernetes may change from time to
time, but you can always find links to them in the official documentation. Falco’s Helm chart
can generate those files, too. Surprisingly, The Falco Project uses this Helm functionality to
automatically publish up-to-date manifest example files under the Falcosecurity GitHub
organization.

https://oreil.ly/P5BUa
https://oreil.ly/6QhH3

Chapter 10. Configuring and
Running Falco

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the
authors’ raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 10th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at sgrey(@oreilly.com.

In the previous chapter, you learned how to install Falco in production
environments. However, you still need to know how its configuration
system works. Learning to change its settings is fundamental to managing
them over time and accommodating your needs. You can configure Falco
during or immediately after installation, when updating to a newer version,
or any time your needs change.

This chapter will help you understand and use the available settings. First,
we’ll explain the main areas of intervention: command-line options,
environment variables, the configuration file, and rules files. Then we will
go deeper into each of them. You will also find valuable suggestions for
production use cases, along with some tips to fine-tune your Falco
configuration. At the end of the chapter you’ll find a dedicated section on
configuring plugins, and we’ll show you how to update the configuration of
a running Falco instance.

mailto:sgrey@oreilly.com

Configuring Falco

You can configure Falco through its settings, which we have grouped into
three categories:

Command-line options and environment variables

Command-line options and environment variables are the first settings
you need to run Falco. Most of these settings allow Falco to talk with
your system, which is particularly important for system instrumentation
and data enrichment. Other settings here let you adapt Falco to specific
needs or help with troubleshooting.

Configuration file

You can configure almost any Falco behavior from within the main
configuration file, which you can customize according to your needs.
For instance, you can load rules files, activate the output channels you
want, and use plugins if you need to. By default Falco looks for this file
at /etc/falco/falco.yaml, but you can specify a different path using a
command-line option.

Ruleset

Falco comes with a rich default ruleset so that you can start to use it
immediately. However, the ruleset is perhaps the most critical aspect to
customize. It represents the configuration of the Falco engine and sets
what Falco will detect. By convention, rules files live in /efc/falco.

Before we address each category in detail, we want to show you how Falco
changes depending on how you install it.

Differences Among Installation Methods

Regardless of the installation method you choose, Falco’s configuration
areas will always be the same. However, the ways you can change the
settings may be slightly different.

Host Installation

If you installed Falco using a package manager, you can specify the
command-line options and environment variables directly in the systemd
unit file, which you can find at /usr/lib/systemd/user/falco.service. Using
systemctl edit falco is a convenient way to do that. When you’re
finished, remember to restart the service with systemctl restart falco.

If you are not using a package manager, running Falco is entirely up to you,
including passing command-line options and setting the environment
variables. In such a case, you can manually create a systemd unit. You can
use the falco-service file’s source code as an example.

Regardless of the package you use, you’ll find Falco’s configuration and
rules files under /etc/falco. You can edit those files directly and then restart
Falco.

Containers

Falco’s container images allow you to specify the command to run, which
by default is /usr/bin/falco. If you need to pass command-line options,
do so through the CLI of your container runtime. For example, with
Docker, to pass - -version, you would use:

$ docker run --rm -it falcosecurity/falco /usr/bin/falco --
version

Note that the falcosecurity/falco container image’s entry point is a script
that tries to install the driver automatically. If you want to skip the
installation, you need to set the SKIP_DRIVER_LOADER environment variable
to any nonempty value. In Docker, you can use the -e option to set an
environment variable.! So, for example, to get the version and skip the
driver installation at the same time, you would run:

$ docker run --rm -it -e SKIP_DRIVER LOADER=y \
falcosecurity/falco /usr/bin/falco --version

https://oreil.ly/0LcF3

Falco container images also bundle both the default configuration file and
the default rules files. If you need to modify any of these, the usual
approach is to make an external copy of the file (for example,
/etc/falco/falco.yaml) and then mount it into the container. You can grab the
configuration and rules files from the binary package (make sure it matches
the version of Falco running in the container) and modify them according to
your needs. Then, in Docker, use the -v option to mount the modified files
into the container.?

Kubernetes Deployments

When you deploy Falco in Kubernetes, you’ll also specify command-line
options and environment variables in the DaemonSet or the Deployment
manifest. If you use Helm or the example manifests from Chapter 9, the
deployment will already be configured with all the options to connect to
your container runtime and the Kubernetes API server. If you need to
modify an option, find the corresponding Falco chart configuration or
modify the manifest directly.

Another important difference is that configuration and rules files live inside
a ConfigMap whose contents shadow those shipped within the container
image. For Helm users, the maintainers update Falco’s chart and
configuration and rules files in sync with the Falco distribution. On the
other hand, if you are using manifest files, it’s completely up to you to
ensure the ConfigMap embeds the right files.

Command-Line Options and Environment
Variables

When running Falco, specifying a command-line option or setting an
environment variable is sometimes the only way to change some of the
settings. Settings you configure via the command line always take
precedence over settings loaded from the configuration file.

https://oreil.ly/9CsSk
https://oreil.ly/L6rs9

You can get the full list of Falco’s command-line options by running falco
- -he'lp. Falco will print each option (along with a brief description) in
alphabetical order. The available options may change depending on the
Falco version. Always refer to falco --help when in doubt.

In the rest of this section, to help familiarize you with the most important
settings, we group them by function. We also provide detailed information

about using environment variables, which you will not find in falco --
help.

Configuration Settings

The two command-line options shown in Table 10-1 pertain to Falco’s
configuration file (located by default at /etc/falco/falco.yaml). The first one
allows you to load a configuration file from a different location; the second
allows you to override some configuration values on the fly. You won’t
usually need to use them, but they can be handy when troubleshooting.
Also, when running Falco in production, ensure nobody sets them by
mistake so that Falco uses the correct configuration file and the intended
settings.

M so—wov ~ 1~ .o s n 03 8 8w o r OO S SEI =T 1o~

e
o
p
t
I
o
n
S
Option Description
-C Sets the path to the configuration file Falco will load. If this is not set, Falco
uses the default path: /etc/falco/falco.yaml.
-0, --option Overrides a value in the configuration file by setting the value <vaI> to the
<key>=<val> configuration option specified by <key>. You can use dot notation (.) to

specify nested options or square brackets notation ([]) to access lists: for
example, -o key.subkey.list[0]=myValue.

Instrumentation Settings (Syscalls Only)

As you learned in Chapters 4 and 9, Falco uses the kernel module driver by
default. You can switch to the eBPF probe by setting the FALCO_BPF_PROBE
environment variable. You can set it to the path of the probe you want to
use: for example, FALCO_BPF_PROBE="/path/to/falco-bpf.o".
Otherwise, you can set it to an empty string (FALCO_BPF_PROBE="") and
Falco will use ~/.falco/falco-bpf.o by default.

When you run Falco in a container or Kubernetes, the container image
supports FALCO_BPF_PROBE to control the on-the-fly driver installation,
along with other environment variables. (The falco-driver-loader script
exposes most of them, so you can also use falco-driver-loader --help
to get more information). Let’s look at those environment variables now:

DRIVERS_REPO

If you create a repository of prebuilt drivers (either kernel modules or
eBPF probes), you can use this option to instruct the script to download
a driver from your repository. A driver repository hosts files with the
following URL structure:

<DRIVERS REPO>/<DRIVER VERSION>/falco <OS_ID>
 <KERNEL RELEASE> <KERNEL VERSION>.[ko|o]

This variable allows you to set the base URL of your repository (with
no trailing slash). You may want to use this setting if you are running
Falco in an air-gapped environment, or if you don’t want to download
prebuilt drivers from the internet. If not set, this variable defaults to The
Falco Project’s public driver repository.

DRIVER_INSECURE_DOWNLOAD

If your driver repository does not support HTTPS, set it to any value
(for example, yes) to allow the script to download files from insecure
URLs.

SKIP_DRIVER_LOADER

If you installed the driver on the host by other means, you’ll likely want
to disable the falco-driver-loader script when the container starts. In
that case, set this environment variable to any value (for example, yes).
This setting only affects Falco container images that use falco-driver-
loader in the entry point, like the falcosecurity/falco container image.

HOST_ROOT

This environment variable differs from the others listed here in that it’s
not related to the driver installation and directly affects Falco.
HOST_ROOT expects a base path and affects the instrumentation setup
and enrichment system. If the value is not empty, Falco uses it as a path
prefix when it accesses the host’s filesystem to use the kernel module
devices (under /dev) or to fetch information for data enrichment (in

https://oreil.ly/vsE8X

particular from /proc and the container runtime Unix socket path). The
falco-driver-loader script uses this variable for similar purposes (for
example, to access /boot, /lib, /usr, and /etc).

Use HOST_ROOT when running Falco in a container. The usual
convention is to set HOST_RO0T=/host and mount all the relevant paths
into the container under the /host directory. Kubernetes deployment uses
this approach; see Chapters 5 and 9 for more details.

For completeness, other settings related to syscall instrumentation are listed
in Table 10-2. These settings have a significant performance impact, so
don’t use them unless you need to.

N s o< v]0.2.SySCall.lnStrumentat.lon

_LI I I OO

~ =% o & ~

“ 3 O

Option

-u, - -userspace

Description

Falco does not monitor all syscalls by default, so you usually cannot use all
event types in rule conditions (the driver skips most syscalls that are noisy or
expensive to process, such as read, write, send, and recv). If you enable this
setting, the driver will send all supported syscall events to Falco, which may
be helpful in edge use cases. However, enabling this setting has a severe
performance penalty. Falco may not be able to catch up with the event stream.
The full list of supported syscalls is available in syscall_info_table.c. By
default, the driver skips those marked with EF_DROP_SIMPLE_CONS.

Use this option only when you can’t use the kernel space instrumentation.
This option must be used with a user-space driver like pdig (discussed in
Chapter 4).

https://oreil.ly/WVDRm

Data Enrichment Settings (Syscalls Only)

When using syscalls as a data source, Falco needs to connect to a driver. It
also needs to fetch information from the host, the container runtime, and
Kubernetes. In Chapter 5, we talked briefly about the settings described in
this section; Table 10-3 provides detailed usage descriptions of command-
line options and environment variables that affect the data enrichment

mechanism.

N S 9~ v ~ T n RS - T Ve e U ST R w0 SS3 T

~ Q0 o

“ 3 O

Option

--cri <path>

--disable-cri-
async

-k <url>, --
k8s-api <url>

-K <bt_file> |
<cert file>:
<key file[#pw
dj>

[:

<ca cert file
>1,
--k8s-api-cert
<bt file> |
<cert file>:
<key file[#pw

Description

Use this option to specify the path to the Unix socket of a CRI-compatible
container runtime. If the Unix socket is valid, Falco will connect to the
runtime to fetch the container metadata.

In recent versions of Falco, you can specify this option multiple times. Falco
will try each given path in order and use the first one that connects. When this
option is not set, Falco will only try to use /run/containerd/containerd.sock.

This option disables asynchronous CRI metadata fetching. You won’t usually
need to set it. However, if Falco shows container metadata intermittently, this
option can help you fix the issue.

This enables Kubernetes metadata enrichment by connecting to the
Kubernetes API server specified by <url>.

Alternatively, you can use the FALCO_K8S_API environment variable, which
accepts the same values allowed by this option.

Use this option to authenticate with the Kubernetes API server. You can
provide either a bearer token file? (<bt £1i1le>) or a certificate and a private
key (<cert file>:<key file>).Ifyou use the latter, you can optionally
use a passphrase (#pwd) to access the private key, if encrypted, and a CA
certificate (: <ca cert file>)to verify the API server’s identity.

Certificates and private keys must be provided in the PEM file format.
As an alternative, you can use the FALCO_K8S_API_CERT environment
variable, which accepts the same values allowed by this option.

dj>

[:
<ca cert file
>]
--k8s-node This option enables an important performance optimization for Kubernetes
<node name> metadata enrichment: Falco will use the node name as a filter when requesting

metadata of Pods from the API server, discarding unnecessary metadata
coming from other nodes. You should always set this option. If you don’t,
Falco will work, but may have performance issues on large clusters.

a A bearer token file contains a string that authenticates the API request, one of the
available authentication strategies for Kubernetes.

Ruleset Settings

Table 10-4 shows the command-line options that can affect the ruleset.
Falco will only use the configuration file to load rules if you don’t use any
of these options.

https://oreil.ly/nh9Qk

N s 9 < o

~ O

X+

R~ <H~ S N S S ST S~ S B

I~ O~ RQ

Q

~,

“ 3 O

Option

-D
<substring>

-r
<rules file>

Description

This option allows you to disable one or more rules that match
<substring>in their names. You can specify it multiple times, but it is

incompatible with the -t option (see below).

This option allows you to specify a file or a directory that Falco will use to
load rules. In the case of a directory, Falco loads all the files it contains. You
can specify -r multiple times to load multiple files or directories.

If you use this option, Falco will ignore any rules files and directories
specified in the configuration file (/etc/falco/falco.yaml). Thus, we do not
recommend using it in production, exception for debugging or in special
cases.

-T <tag> This option disables any rules with the given <tag>.You can specify it
multiple times, but it is incompatible with the -t option (see below).

-t <tag> This option enables only rules with the given <tag> and disables all others.
You can specify it multiple times, but it is incompatible with the -T and -D
options.

Output Settings

We described most of the output formatting options (along with Falco
output channel configuration) in Chapter 8. However, two other command-
line options (listed in Table 10-5) allow you to further customize Falco’s

output behavior.

N S99~ v ~ 1 n .0 3w A3 U0 TSN~ e =Y O R w m

Option Description

p<output form

s When enabled, this option appends additional information to the Falco
at-,

notification’s output. A few flavors are available; for instance:

print<output f
ormat>

e -pcor -pcontainer will add container information, such as the name
and ID.

o -pk or -pkubernetes will add Kubernetes information, such as the
namespace and Pod name.

We recommend using -pk when using Falco in a Kubernetes context.

-U, - -unbuffered This option disables full output buffering in the output channels (see
Chapter 8). Use it only if you encounter issues when piping the Falco output
into another process or script. Turning off output buffering may increase CPU
usage.

Other Settings for Debugging and Troubleshooting

The command-line options we have described so far are the ones you’re
likely to use routinely while operating Falco. However, there’s another
group of options (listed in Table 10-6) for more occasional use, such as
when you need information about your Falco installation or are trying to
solve a problem.

NSt 9—w 9~ 10 .U 883 ST | m ==~ S OO QwumORununigo T oV

~0Q 00 =

Q0 0 TR NS QO Y TQ IS QS

~,

Option

-e
<events file>

-L
-1 <rule>

--list[=

Description

Tells Falco to use the trace file (see Chapter 3) specified by
<events file> as adata source instead of using a live event source. Once

Falco consumes all the events in the file, it exits. Useful for testing and rule
authoring.

Prints information about all loaded rules.
Prints the name and description of the rule with name <rule>, if loaded.

Lists all available condition fields, grouped by class (see Chapter 6). If you

<source>] also provide <source>, Falco will only list fields for that data source. The
value of <source> can be syscall or any other data source provided by
configured plugins.

--list-plugins Prints information about configured plugins.

-s Tells Falco to create the file <stats file>and populate it with statistics
<stats file> while running.

--stats-interval Sets the refresh interval (in milliseconds) for updating the file created by -s
<msec> <stats file>.

--support Prints details about the loaded Falco configuration and ruleset, and other
useful information for troubleshooting that you can provide when asking for
help (for example, when opening an issue in the Falco GitHub repository).

-V, --validate Validates the content of the given <rules file>. Useful for testing and
<rules file> rule authoring.

-v Enables verbose logging while Falco is running. This option does not affect
the usual Falco notifications, but log messages may interleave. Useful for
debugging.

--version Prints the version of Falco you are using.

Configuration File

We talk about Falco’s configuration file all throughout this book, and we’ve
already covered its most important aspects. This section provides an
overview and pointers to everything you may need.

The configuration file is a YAML file, located at /etc/falco/falco.yaml by
default. In this file, you can configure:

Rules files

The rules_file configuration node is the first one you’ll find in the
configuration file. It allows you to choose which rules files Falco will
load (more on these in the next section).

Plugins

You can enable plugins and pass settings through the load_plugins
and plugins configuration nodes (see “Using Plugins”™).

https://oreil.ly/vkk2h

Output channels

Various configuration nodes allow you to configure formatting, logging,
and output channel options. Refer to Chapter 8 for more information on
the output framework.

Embedded servers

Falco provides an embedded web server® that exposes a healthy
endpoint. Container orchestrators and other applications can use this
endpoint to check if Falco is up and running. The webserver
configuration node allows you to enable and configure the server.

Falco also provides a gRPC server that you can enable and configure
using the grpc configuration node (see Chapters 8 and 12).

Advanced fine-tuning settings (syscalls only)

Syscall instrumentation is likely the most complex feature Falco
supports, so the configuration file also provides advanced settings for it.
Those settings vary between versions of Falco, so we suggest you
always refer to the online documentation and the inline comments
included in the configuration file.

Notable options here include syscall_event_drops, which controls
the detection of dropped events; syscall_event_timeouts, which
helps detect the absence of events (an uncommon situation for syscalls);
and metadata_download, which provides several options to fine-tune
information downloads from the container orchestrator API server.

Ruleset

Falco comes with a set of predefined rules that you can use right out of the
box. However, there are good reasons to customize your ruleset as much as
possible. The default ruleset is designed to cover major attack vectors, but
these rules cannot cover all possible cases. Attack mechanisms are always

evolving, so your ruleset needs to keep up. If you want the highest level of
security, you need a ruleset that’s tailored to your specific environment.

Additional benefits of customizing your rules include avoiding noisy false
positives and optimizing Falco’s performance. You need to learn how to
configure the ruleset correctly for all of these reasons.

Loading Rules Files

There are two ways to tell Falco which rules files to load: through the
command line or the configuration file. On the command line, you specify
rules files using the -r flag. In the configuration file, you put rules files
under the rules_file section. Recall that anything you set via the
command line will take precedence over the configuration file. In
production, we recommend loading rules files through the configuration file
only, for this reason.

Whichever method you choose, you can specify more than one rules file or
directory. So, you can do:

$ falco -r path/to/my/rulefilel.yaml -r path/to/my/rulefile2.yaml

or:

rules_file:
- path/to/my/rulefilel.yaml
- path/to/my/rulefile2.yaml

It’s important to be aware that rules files are loaded and parsed in the order
you specify. (When the entry is a directory, Falco will load every file in that
directory in alphabetical order.) This makes it possible to customize rules,
macros, and lists (see Chapter 7) that are defined in one file in a subsequent
file. The default Falco configuration is crafted to take advantage of this
mechanism.

Let’s take a look at the rules_f1ile section in the default configuration file
that 1s shipped with Falco:

rules_file:
- Jetc/falco/falco_rules.yaml
- Jetc/falco/falco_rules.local.yaml
- Jetc/falco/rules.d

The main rules file, falco rules.yaml, which contains rules for syscalls, is
followed by a file named falco rules.local.yaml. This file is where you
should make changes to falco rules.yaml. It is empty by default, and you
can work in it without having to worry about polluting the main rules file.
You can create other local files as you need.

Usually, Falco provides one rules file per data source. You can use this
approach or use multiple files, depending on your needs. Just keep in mind
that the loading order matters. Also note that Falco will only load rules that
match the configured data source; all others will be ignored. This means
you don’t have to worry about manually removing or disabling rules files
intended for other data sources.

Tuning the Ruleset

The most important aspect of tuning the ruleset is understanding what your
use case needs to detect. That will allow you to decide which rules work for
you and which do not. Avoiding unnecessary rules has the double benefit of
increasing performance (Falco will use less CPU resources) and reducing
false positives.

Once you have done an initial skim, disable the rules you are not interested
in (as described in Chapter 7). We do not suggest removing them from the
rules files unless you have created your own rules files from scratch. We
also recommend periodically evaluating your ruleset, because the rules you
need will change over time.

Next, look at the rules’ conditions. We’ll get into the details of writing
Falco rules in Chapter 13, but for now we’ll offer two general guidelines for
evaluating Falco rules.

First, avoid using too many exceptions in conditions: for example, long
chains of and not (...) and not (...).Falco has no alternative but to

sequentially check any exception present in the condition, which is an
expensive task. Shorter conditions, whenever possible, can improve rule
evaluation performance significantly.

The second guideline applies only to syscalls, and holds that a rule
condition should always match just one event type or a small set of event
types. For example, evt.type=connect and evt.type 1in
(open,openat,openat2) are both fine, but evt.type!=execve is not,
because that filter would match all event types except one, which is too
many. Falco indexes rules by event type as a way of optimizing its internal
evaluation process; a rule matching too many event types would make this
indexing inefficient. To help rule authors spot this issue, Falco emits
warnings for rules that match all event types.

Using Plugins

By default, Falco comes configured to use syscalls. If you want to use a
plugin as your data source instead, make sure that:

e The plugin file is already available in /usr/share/falco/plugins (some
plugins are shipped with Falco); if not, you’ll need to install it in that
folder.

* A rules file for the plugin is available (we recommend placing it under
/etc/falco).

e You have read the plugin’s documentation and understand which
configuration parameters it needs.

Then, preparing Falco’s configuration file to use a plugin is a three-step
process: select the correct rules file, configure the plugin, and enable it.

To illustrate this process, we will use the CloudTrail plugin, which fetches
log files containing CloudTrail events (details on using this plugin are
provided in the next chapter. The CloudTrail plugin has a ruleset that
requires another plugin with field extraction capability: the JSON plugin.
Both plugins and the ruleset come bundled with Falco out of the box, so

https://oreil.ly/kgImn
https://oreil.ly/DUEDJ
https://oreil.ly/Viiaj

you should already have them if you’ve installed Falco. You’ll find the
plugin files libcloudtrail.so and libjson.so under /usr/share/falco/plugins
and the rules file at /etc/falco/aws_cloudtrail rules.yaml.

Rules files for plugins are not usually configured by default in the Falco
configuration, so you’ll have to add an entry to rules_f1ile to load the
correct rules file (you can also remove unnecessary ones if you want to):

rules_file:
- Jetc/falco/aws_cloudtrail_rules.yaml

Next, under plugins, add the relevant entries:

plugins:
- name: cloudtrail
library_path: libcloudtrail.so
init_config:
sqsDelete true
open_params: "sqs://my-sqgs-queue"
- name: json
library _path: libjson.so
init_config: ""

The name field must match the plugin name and library_path must match
the plugin file under /usr/share/falco/plugins.

In init_config, add the initialization parameters that Falco will pass to the
plugin (refer to your plugin’s documentation for details). Most plugins
accept either a plain-text or a JSON-formatted string. If the plugin supports
a JSON string, you can still use the YAML syntax for init_config (as in
the preceding example); Falco will automatically convert it for you.

The open_params setting is only needed for plugins with event sourcing
capability (such as the CloudTrail plugin) and accepts only a plain-text
string. It provides the parameters to open the stream of events (again, refer
to your plugin’s documentation). Some plugins might not need this setting;
in that case, you can just set it to an empty string ("").

The last step 1s to enable your plugins:

load_plugins: [cloudtrail, json]

The load_plugins setting accepts an array of plugin names. You can
enable multiple plugins at the same time.*

That’s it! Your plugins are now configured and ready to run in Falco.

Changing the Configuration

Once you’ve installed and configured Falco, you may need to change its
configuration from time to time. There are two ways to tell Falco to load an
updated configuration (that is, any modification to the configuration file or
rules files).

The simplest method is just to modify the configuration and then restart
Falco. If you installed Falco on the host using a package manager, you can
do this with systemctl restart falco. If you are running Falco in a
container, restart the container. If you’re running it in a Kubernetes cluster,
you’ll need to redeploy Falco. Restarting Falco is the only way to upgrade
to a newer version or change its command-line settings.

The second way to load an updated configuration is to hot-reload, or tell
Falco to reload the configuration and rules files without stopping its running
process. You can tell Falco to reload itself by sending a SIGHUP signal:

$ kill -HUP <falco process ID here>

Once Falco receives the signal, it will reload the configuration file and the
configured rules files.

Since version 0.32.0, Falco can automatically hot-reload when the
configuration file or a rules file is modified. In the configuration file, the
watch_config_files setting controls this feature (enabled by default). So,
in recent versions of Falco, you can just change the configuration file or
rules files without the need to send a SIGHUP signal manually.

https://oreil.ly/6unav

Note that when Falco is restarting or hot reloading, it does not detect events.
However, the amount of time required to hot-reload Falco is significantly
shorter than the time it takes to restart the process, and is usually negligible.

Conclusion

This chapter and the previous one provided in-depth coverage of installing,
configuring, and running Falco in a production environment, for both the
syscall instrumentation scenario and the scenario where you’re using a
plugin as a data source. Now, it’s time to dig deeper into a concrete plugin
case: using Falco for cloud security. In the next chapter, you will discover
how to secure your cloud by taking advantage of the CloudTrail plugin.

1 There are several other ways to set environment variables when running a container in
Docker; for more information, refer to Docker’s online documentation.

2 There are several alternatives for mounting files into a container. For details, see Docker’s
documentation.

3 Falco’s developers initially introduced the web server to support the Kubernetes audit log as a
data source. Recently, they factored out this functionality into a plugin. Thus, the actual
settings you can find under the webserver configuration node may vary significantly from one
Falco version to another.

4 The first versions of Falco with the plugin system do not allow you to enable multiple plugins
with the event sourcing capability at the same time. However, you can enable multiple plugins
with only the field extraction capability (see Chapter 4).

https://oreil.ly/91H3j
https://docs.docker.com/engine/reference/commandline/run/

Chapter 11. Using Falco for
Cloud Security

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the
authors’ raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 11th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at sgrey(@oreilly.com.

Now that you’ve learned all you need to know about configuring and
running Falco, it’s time to focus on an important topic that can have a huge
impact on your security posture: cloud security.

If you are reading this book, there is a good chance that some of your
software (or all of it!) runs in the cloud. Since AWS is the leading provider
of cloud services, there is also a good chance that your software is running
there.

Public clouds are great environments to run software. Their support for
elasticity, flexibility, and automation makes building and running apps
easier and more efficient. However, cloud-based apps and the data they use
are exposed to attacks from the whole planet. They are also exposed to
misconfigurations, mistakes, and malicious behavior from internal teams.

A comprehensive security posture needs to take many domains into
account, including applications, users (external and internal), and data.

mailto:sgrey@oreilly.com

Failing to properly protect any one of these domains will result in gaps and
therefore in risk. For example, protecting workloads that run in containers
and hosts (which you can do effectively with Falco) is not beneficial unless
you also cover the cloud infrastructure where these workloads run.

Fortunately, Falco can bridge this gap and help you achieve the coverage
you need. Let’s learn how!

Why Falco for AWS Security?

Cloud security is a fertile and constantly evolving space with many
implementation options. Architecturally, most of those options fall into two
basic categories:

1. Tools that query cloud APIs or watch cloud data stores to detect
misconfigurations or vulnerabilities

2. Tools that stream cloud logs into a backend, index them, and let you
query them

If your goal is to detect threats in cloud-based software, tools in category 1
won’t be very useful. Polling is great for detecting gaps and validating
compliance, but lacks the real-time nature required to detect threats and
respond quickly. Category 2 tools are powerful, but also tremendously
expensive (especially in environments like the public cloud, where tons of
logs are produced) and not friendly to deploy and use.

The Falco runtime security approach provides a very effective solution to
this problem. Falco’s philosophy is based on three key concepts. First, it
parses data in a streaming fashion to detect threats in real time. Second, it
implements detection on top of an engine that is lightweight to run and easy
to deploy. Third, it offers a compact rule language that is quick to learn but
flexible and expressive. This philosophy, as you’ve seen throughout the
book, is very effective with system calls and works equally well when
applied to logs like those produced by AWS CloudTrail.

Falco consumes few resources and, most importantly, analyzes the data in a
streaming way—no need to perform expensive copies or wait until the data
is indexed. Falco looks at your data in real time and notifies you of
problems in seconds. Getting it up and running takes only a few minutes, as
you saw in Part I of this book, and adopting it for both cloud logs and
system calls allows a unified approach to threat detection. Let’s look at how
it works.

Falco’s Architecture and AWS Security

When deployed in the context of AWS infrastructure security, Falco
implements detections on top of a specific data source: the logs generated
by AWS CloudTrail. The way this works is shown in Figure 11-1.

Amazon CloudTrail
[AWS CloudTrail logs] Amazon 53
v S

[ﬂnmazﬂn ECR] [ﬂnmazon ECS]

[Amazun EBS][Amaznn Ecz] vents for >190 service

Figure 11-1. The high-level architecture of a Falco deployment for AWS security

CloudTrail 1s a log aggregation service offered by Amazon. It collects logs
from hundreds of AWS services and stores them in S3, using a consistent
and well-documented format. CloudTrail is easy to set up and offers a
coherent layer that insulates the customer from the complexities of
collecting logs of users’ and services’ activity.

CloudTrail events are entries in JSON files that CloudTrail writes in the S3
bucket at regular intervals. Falco understands how to read and parse these
events thanks to the CloudTrail plugin (Figure 11-2), which is created and
maintained by the Falco community. (If you need a refresher on what Falco
plugins are and how they work, see Chapter 4.)

Falco

A

CloudTrail

CloudTrail plugin

. o

Figure 11-2. Event collection with the CloudTrail plugin

In addition to offering multiple methods to collect CloudTrail logs (more on
each of these methods later in the chapter), the CloudTrail plugin extends
Falco with AWS-specific fields, which you can use to create rules like this
one:

- rule: Console Login Without MFA
desc: Detect a console login without MFA.
condition: ct.name="ConsoleLogin" and ct.error=""
and ct.user.identitytype!="AssumedRole" and
json.value[/responseElements/ConsoleLogin]="Success"
and json.value[/additionalEventData/MFAUsed]="No"
output: Detected a console login without MFA (requesting user=%ct.user,
requesting IP=%ct.srcip, AWS region=%ct.region)
priority: CRITICAL
source: aws_cloudtrail

Once Falco’s CloudTrail plugin is configured with a CloudTrail trail as an
input, Falco will continuously analyze the trail’s upcoming data, providing
real-time anomaly and threat detection. It’s like having a security camera
for your cloud activity!

Detection Examples

Here are some of the things you can detect with Falco when it’s configured
for AWS security:

e Someone logs into the AWS console without multifactor authentication
(MFA)

e Someone deactivates MFA for the root user
e Someone creates a new AWS user or group
e Someone runs instances in a non-approved region
e Someone changes the permissions of an S3 bucket

e Someone disables CloudTrail logging

For the full list, refer to the CloudTrail rules file.

Configuring and Running Falco for
CloudTrail Security

This part of the chapter will outline approaches to setting up cloud security
using Falco, describe the components, and guide you through configuring
everything properly. As we mentioned, Falco’s integration with CloudTrail
happens through the CloudTrail plugin. The plugin can be configured to
receive log files in three different ways:

e A Simple Queue Service (SQS) queue that passes along Simple
Notification Service (SNS) notifications about new log files

¢ An S3 bucket

e A local filesystem path

Of these three methods, the first one is what you will use in the vast
majority of production situations, so we will focus on it first.

Receiving Log Files Through an SQS Queue

https://oreil.ly/beQYF
https://oreil.ly/OWVgb

This deployment method consists of leveraging SQS to notify Falco when
new CloudTrail logs are produced. Falco monitors the SQS queue and
parses new logs in real time when they arrive. The process is depicted in
Figure 11-3.

CloudTrail
plugin

The process of setting up Falco in this configuration involves three steps:

Figure 11-3. SOS queue collection diagram

1. Creating the CloudTrail trail and configuring it with an SNS topic. The
SN topic detects changes to the S3 bucket where the trail is
depositing the files and broadcasts them to the world.

2. Creating the SQS queue and attaching it to the SNS topic. This creates
an endpoint that Falco can use to detect the arrival of new data.

3. Configuring Falco to receive the logs using the SQS queue.

We will guide you with step-by-step instructions to set all of this up, so you
have full knowledge of the moving parts. Before doing that, however, we’ll
show you the easy shortcut: a Terraform module that will do the work for
you.

Terraform-based deployment
You can find the Terraform module on GitHub. Clone the repository to your

local machine and then execute the following commands:

$ cd examples/single-account
$ terraform init

https://oreil.ly/4qvQX

$ terraform validate
$ terraform apply

If all goes well, you should get output that looks like this:

Apply complete! Resources: 14 added, 0 changed, 0 destroyed.
Outputs:
cloudtrail_sns_subscribed_sqs_arn = "arn:aws:sqs:Z2722"

cloudtrail_sns_subscribed_sqs_url = "https://sqs.<REGION>.amazonaws.com/.../
<Q UEUE_NAME>"

You can now use <QUEUE NAME> in your falco.yaml file:

plugins:
- name: cloudtrail
library_path: libcloudtrail.so
init_config: ""
open_params: "sqs://<QUEUE NAME>"
- name: json
library_path: libjson.so
init_config: ""
load_plugins: [cloudtrail, json]

Next, configure the rules_f1ile section of falco.yaml to load the
CloudTrail rules:

rules_file:
- Jetc/falco/aws_cloudtrail _rules.yaml

and you’re ready to launch Falco!

Manual deployment

Here are the steps to follow to set up Falco with an SQS queue if you don’t
want to use the Terraform script. The first step is to create the trail. You can
do this as follows:

1. Go to the CloudTrail section of the AWS console.

2. Click “Create trail.”
3. Name the trail Falco.

4. As the storage location, you can either pick an existing trail or tell
AWS to create a new one.

5. Uncheck “Log file SSE-KMS encryption.” SSE encryption is
something you should definitely use as a good practice, but
configuring it goes beyond the scope of this chapter.

6. Check “SNS notification delivery.”

7. Under “Create a new SNS topic,” select New and name the topic falco-
cloudtrail-logs.

8. Click Next.

9. The “Choose log events” page lets you pick which logs you want to
capture. The default settings are enough for Falco to operate properly.
Checking “Data events” or “Exclude Amazon RDS Data API events”
will allow you, if you desire, to craft more granular rules on data
events, like S3 bucket-level and object-level access.

10. Click Next.
11. Click “Create trail.”
Next, create the SQS queue:
1. Go to the SQS section of the AWS console.
2. Click “Create queue.”
3. Name the queue falco-queue.

4. The default access policy will work as is with Falco. However,
consider implementing a less privileged access policy, for example
using the AWS Policy Generator.

https://oreil.ly/fyxDD

5. Click “Create queue” at the bottom of the page. This will bring you to
the falco-queue details page.

6. Click “Subscribe to Amazon SNS topic.”

7. Select the topic whose name ends in falco-cloudtrail-logs.

8. Click Save.

Now you need to configure Falco. This involves setting up AWS
authentication and configuring Falco itself. To read log files from an S3
bucket or SNS notifications from an SQS queue Falco needs authentication
credentials, and it needs to be configured with an AWS region. Falco relies
on the same authentication mechanisms used by the AWS Go SDK:
environment variables or shared configuration files. Configure these as
follows:

Environment variables

Specify the AWS region with AWS_REGION=xxx, the access key ID with
AWS_ACCESS_KEY_ID=xxx, and the secret key with
AWS_SECRET_ACCESS_KEY=xxx. Here’s a sample command line:

AWS_DEFAULT REGION=us-west-1 AWS_ACCESS_KEY ID=XXX
AWS_SECRET_ACCESS_KEY=xxX falco -c <path-to-falco.yaml> -r <path-to-

falco-rules>

Shared configuration files

Specify the AWS region in a file at SHOME/.aws/config and the
credentials in a file at SHOME/.aws/credentials. Here are some
examples of what these files will look like:

$SHOME/ .aws/config

[default]

https://oreil.ly/DmUSL

region = us-west-1

$SHOME/ .aws/credentials
[default]
aws_access_key 1d=<YOUR-AWS-ACCESS-KEY-ID-HERE>

aws_secret_access_key=<YOUR-AWS-SECRET-ACCESS-KEY-HERE>

Now, set up Falco itself:

1. Add the following snippet to falco.yaml to configure SQS-based log
collection:

plugins:
- name: cloudtrail
library_path: libcloudtrail.so
init_config: ""
open_params: "sqs://falco-queue"
- name: json
library_path: libjson.so

init_config:

load_plugins: [cloudtrail, json]

2. Configure the rules_f1ile section of falco.yaml to load the CloudTrail
rules:

rules_file:

- Jetc/falco/aws_cloudtrail_rules.yaml

3. Start Falco.

Et voila: your AWS infrastructure is now protected!

Reading Events from an S3 Bucket or the Local
Filesystem

While the SQS-based setup is recommended for real-time detection, Falco
can also read CloudTrail logs directly from the S3 bucket or from a copy of
the logs stored in the local filesystem. While the SQS setup processes “live’
logs as they arrive, the S3 and local filesystem setups read stored data. This
means they effectively operate in the past and cause Falco to exit when they
reach the end of the currently stored data. This approach can be valuable for
a couple of reasons. First, it allows you to iterate quickly during rule
development. Second, it allows you to run Falco “back in time” on
CloudTrail logs that have already been stored (even if they’ve been stored
for a long time). Curious if (or when) somebody has changed the
permissions of a bucket during the last three weeks? Point Falco to the logs
and you can find out easily!

bl

Let’s take a look at how to run Falco in this mode.

S3 bucket

First, you need to set up AWS authentication. We just described how to do
this for SQS access, and it works exactly the same for S3, so just go back
and follow the steps at the end of the previous section.

Once you’ve configured AWS authentication, add the following snippet to
falco.yaml:

plugins:
- name: cloudtrail
library_path: libcloudtrail.so
init_config:
s3DownloadConcurrency: 64
open_params: "s3://my-s3-bucket/AWSLogs/411571310278/CloudTrail/us-west-
1/2021/09/23/"
- name: json
library_path: libjson.so
init_config: ""
load_plugins: [cloudtrail, json]

Note how the open_params key is just the URI of the trail location on S3,
which you can easily obtain by navigating to the data in the S3 console and
then clicking “Copy S3 URI.” You don’t need to specify the whole bucket;
you can point to a subdirectory or even a specific log file.

Now you need to configure the rules_f1ile section of falco.yaml to load
the CloudTrail rules:

rules_file:
- Jetc/falco/aws_cloudtrail_rules.yaml

After that, you can just run Falco. It will process every file below the
provided S3 URI and return when it’s done.

Parsing the logs from a machine outside AWS, such as your laptop, might
be pretty slow, because the machine needs to download the data in order to
process it. You can speed things up by increasing the download concurrency
(s3DownloadConcurrency in the init_config key), or pre-download the
data locally using the AWS CLI and then point Falco to the local logs
(which we’ll describe next).

Local filesystem path

You can process CloudTrail logs stored in the local filesystem by putting
the following configuration in falco.yaml:

plugins:
- name: cloudtrail
library_path: libcloudtrail.so
init_config: ""
open_params: "/home/user/cloudtrail-logs/059797578166_CloudTrail_us-east-
1_20210209T0130Z_651DDH3uferZH5Br.json.gz"
- name: json
library_path: libjson.so
init_config: ""
load_plugins: [cloudtrail, json]

You can point to a single file or to a directory, in which case Falco will
recursively read all of the files in the directory.

You will also need to edit the rules_file section of falco.yaml to load the
CloudTrail rules:

rules_file:
- Jetc/falco/aws_cloudtrail_rules.yaml

Once you’ve done that, just run Falco. It will process all of the files and exit
when it’s done.

Extending Falco’s AWS Ruleset

Falco comes with a powerful set of CloudTrail-based rules. However, if you
need customization, the CloudTrail plugin exports a rich set of fields that
you can use to craft your own rules with a high level of granularity.

Writing Falco rules will be extensively covered in Chapter 13. However,
since that chapter is primarily focused on system call-based rules, here are
a couple of tips that will help you get started with cloud rules development:

e CloudTrail rules need to include the following key: source:
aws_cloudtrail. This tells Falco that the fields in the rule condition
and output must come from the CloudTrail plugin.

e You can obtain a list of fields you can use in a CloudTrail rule by using
the - -list=aws_cloudtrail Falco command-line switch. Also, take
a look at Table 6-10 in Chapter 6.

What About Other Clouds?

AWS is a very important player in cloud computing, so Falco added support
for it first. However, at the time of writing the Falco community was
working on adding support for both Microsoft Azure and Google Cloud
Platform. Expect more clouds to be added in the long term!

If you want to find out if Falco supports your cloud, check out the plugins
repository on GitHub.

https://oreil.ly/W20tv

Conclusion

In this chapter, you learned that Falco is about more than system calls and
containers, and how you can employ it to protect your cloud software and
vastly improve your security posture. In the next chapter we will switch to
the output side and show you how to collect and treat Falco events.

Chapter 12. Consuming Falco
Events

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the
authors’ raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 12th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at sgrey(@oreilly.com.

At this point, you’ve learned how to run and configure Falco. You
understand how Falco can be used for runtime and cloud security, and how
it can detect a vast spectrum of threats. Now, it’s time to focus on what you
can do with Falco’s detections. Consuming Falco’s output is the final piece
of the puzzle, and the subject of this chapter.

Alerts generated by Falco are helpful for observing and securing your
production system, and we will give you some advice on how to use those
alerts proficiently. The first part of the chapter is about tools that help you
consume Falco’s outputs effectively. We will teach you how to get notified
immediately when Falco detects a security threat, so your security team can
react as soon as possible and take appropriate countermeasures. Finally,
we’ll show you a mechanism for automatically responding to threats to
speed up response times.

mailto:sgrey@oreilly.com

Working with Falco Outputs

A minimal Falco installation outputs a simple textual log that you can store
for later consultation, but this is not very useful. Fortunately, more
intelligent tools allow you to work with Falco’s outputs and expand its
possibilities, and these are an important part of integrating Falco into your
ecosystem.

This section will talk in detail about two tools that we have already
mentioned in the book. The first, falco-exporter, is a tool designed to do one
thing and do it well: produce metrics from Falco’s detected events. The
second, Falcosidekick, is the Swiss Army knife of Falco outputs. It lets you
aggregate data from multiple Falco sensors, filter the notifications, and
forward them to any other application or platform in your environment.

falco-exporter

The falco-exporter project provides a Prometheus metrics exporter for Falco
output events. It consumes Falco outputs via a streamed gRPC API and
exposes a metrics endpoint. The metrics include information on the number
of triggered rules and detailed information on the priority and tags
associated with the rules, as well as labels to identify each event’s origin,
such as the hostname, namespace, and pod’s name. It also provides a
preconfigured Grafana dashboard.” falco-exporter is useful for when you
only need metrics about security events. (By contrast, Falcosidekick can
also export metrics, but it comes with many other functionalities and
outputs.)

Before installing falco-exporter, ensure that Falco is installed and
configured with the gRCP server and gRPC output enabled over a Unix
socket (see “gRPC Output” for a refresher).

Host installation

To install falco-exporter directly on the host, you have to download the
latest version from the releases page, decompress the archive, and copy the
executable file falco-exporter to your preferred location (e.g., /usr/bin).

https://oreil.ly/0j6EJ
https://oreil.ly/rfK8e

Whether you execute it manually or run it as a service is entirely up to you.
The default options work out of the box with the gRPC Unix socket in
/var/run/falco.sock (the default option for Falco). If you need to customize
its options, run falco-exporter --help for assistance.

Running in a container

To run falco-exporter in a container using Docker, use these commands:

$ docker pull falcosecurity/falco-exporter:latest
$ docker run -v /var/run/falco.sock:/var/run/falco.sock \
falcosecurity/falco-exporter:latest

The docker run command assumes that Falco is installed on the host and
Falco’s gRPC Unix socket is present in /var/run/falco.sock.

Deploying to Kubernetes

You can deploy falco-exporter to a Kubernetes cluster using either Helm or
manifest files (see Chapter 9 for details on the two installation methods),
but we recommend Helm. You first need to add the Falcosecurity charts
repository:

$ helm repo add falcosecurity
https://falcosecurity.github.io/charts
$ helm repo update

Then, to install the chart, run:

$ helm install falco-exporter falcosecurity/falco-exporter

For detailed instructions, see the falco-exporter chart documentation. If you
want to use manifest files instead, please follow the steps in the falco-
exporter documentation.

Falcosidekick

https://oreil.ly/qkH5G
https://oreil.ly/lktaK

The Falcosidekick project provides a complete solution for connecting
Falco to your ecosystem. It works on top of Falco’s output and allows you
to forward its notifications to many other destinations (see Figure 12-1).
Falcosidekick can add custom fields to the notifications or filter events by
priority (on a per-destination basis). In particular, supported outputs include
platforms and applications for:

e Communication and collaboration

Metrics and observability

Alerting

Logging and storage

Function as a Service (FaaS) and serverless

Message queues and streaming

Chat Logs Queue/streaming
RN . e € [0
Q@ & 2O

FaasS Metrics Alerting Storage

®8 OB & WO
o ©OR

Figure 12-1. The Falcosidekick logo (left) and some of its supported notification destinations (right)

Falcosidekick also allows you to use a side project, falcosidekick-ui, to
visualize Falco events in a pleasant web UI (shown in Figure 12-2). The
web Ul displays statistics about detected events and shows values in
aggregate form and on a timeline. You can also filter for the events you are
interested in and get all the event details quickly.

https://oreil.ly/MVyRi
https://oreil.ly/o1pcB

----- 1'_1' z.-'..r,,z '-r._,-,,f

\
1
%
'H

- . __.-
e
- i . g

_,r ___.- __...- _.-" -.-f

Thrreeling by Priovity

£ . . = et = e - “ = a - -

M e v

. - - T
Figure 12-2. The Falcosidekick web Ul

Timsling by Souree

Using Falcosidekick requires a small change in Falco’s configuration:
before using it, enable JSON formatting and configure the HTTP output to
send events to the Falcosidekick endpoint (it listens at port 2801 by

default). See Chapter 8 for Falco output configuration instructions and the
Falcosidekick online documentation for specific details.

Host installation

To install Falcosidekick directly on the host, download the latest version
from the releases page, decompress the archive, and copy the executable
file falcosidekick to your preferred location (e.g., /usr/bin). Whether to
execute it manually or run it as a service is entirely up to you. You also need
to create a YAML configuration file and pass its path as an argument. For
example:

$ falcosidekick -c falcosidekick config.yaml

The Falcosidekick repository includes an example configuration file that
you can start with. Falcosidekick also supports environment variables that
you can use as an alternative or to override the configuration file values.

Running in a container

To run Falcosidekick in a container using Docker, use these commands:

$ docker pull falcosecurity/falcosidekick:latest
$ docker run -d -p 2801:2801 falcosecurity/falcosidekick:latest

The docker run command assumes that Falco is installed on the host and
that the HTTP output is configured to send events to port 2801. Using
Docker’s -e option, you can use environment variables to pass
configurations. Alternatively, use Docker’s -v option to give it a YAML
configuration file.

Deploying to Kubernetes

As with falco-exporter, you can deploy Falcosidekick to a Kubernetes
cluster using either Helm or manifest files. We recommend the Helm
installation option, which comes in two variants. Before we explore them, if

https://oreil.ly/ToAMj

you haven’t already added the Falcosecurity charts repository to Helm, do it
by running:

$ helm repo add falcosecurity
https://falcosecurity.github.io/charts
$ helm repo update

Now you’re ready to deploy to your Kubernetes cluster. The first and more
ordinary way to do this is when you already have Falco deployed and
configured to send events to Falcosidekick, and you just need to install the
Falcosidekick chart:

$ helm install falcosidekick falcosecurity/falcosidekick

The other variant allows you to deploy Falco and Falcosidekick in a single
Helm installation that will automatically configure both charts to work
together. It’s usually the most convenient solution. To do this, run:

$ helm install falco falcosecurity/falco --set
falcosidekick.enabled=true

Optionally, if you want to deploy the Falcosidekick web UI as well, add - -
set webui.enabled=true to the install command (regardless of which
variant you choose).

You can find details on additional options in the Falcosidekick chart
documentation. If you want to use manifest files instead, use the provided
online exampﬁ.2

Observability and Analysis

Falco allows you to observe and analyze the security of your cloud-native
environment. If you plan to leverage Falco’s detections for auditing or
forensic purposes, you’ll usually want to store as much information as
possible and make Falco’s results easily accessible and searchable. The
tools described in this chapter offer you plenty of support.

https://oreil.ly/QaipZ
https://oreil.ly/fziYL

Storing Falco events is like ingesting any other application logs. This means
you can reuse your existing logging backend for Falco. Also, Falcosidekick
can easily send Falco events to systems that allow you to store and analyze
vast volumes of log data, like Elasticsearch and Splunk. Since you will
likely use this approach for later analysis, we suggest keeping all events that
Falco emits with no filtering.

You’ll probably also want to collect metrics, as this can help you detect
errors and anomalies in your application. For instance, a metric reporting
that a Falco rule regularly triggers on a particular machine may be a
symptom of a security problem, a misconfiguration, or an implementation
bug in your running application. A reliable tool for this purpose is falco-
exporter: it exposes metrics and connects Falco to Prometheus and also
offers a ready-to-use Grafana dashboard (Figure 12-3).

Figure 12-3. The preconfigured Grafana dashboard for Falco events metrics provided by falco-
exporter

Getting Notified

Although storing and aggregating Falco events is fine for observability, it’s
not helpful when you need to react promptly to a security event. You likely
want to receive important notifications immediately and in the right place,

so that you or your team can take countermeasures or start investigating
right away.

Falco’s built-in output channels do not provide a specific mechanism for
immediate notifications, but Falcosidekick allows you to forward only
important notifications. For example, let’s say you want to get notifications
whenever an event triggers the Sudo Potential Privilege Escalation rule
(which comes with priority: CRITICAL), but not for other, noisier rules
with lower priority levels. Falcosidekick allows you to configure a
minimum priority level at which you want to send events to a specific
destination, and to adjust this configuration for each destination. It supports
most on-call systems, like PagerDuty, Opsgenie, and Prometheus
Alertmanager and can send notifications to most common communication
platforms, including Slack, Mattermost, Rocket.Chat, Microsoft Teams, and
Discord.

You can use Falcosidekick configurations to integrate Falco alerts into your
existing environment easily. And because Falcosidekick allows you to
forward Falco notifications to multiple destinations simultaneously, you
can, for example, send the alerts to both PagerDuty and a Slack channel.

Responding to Threats

Another meaningful—and more sophisticated—way of consuming Falco
events is to create systems that automatically take action in response to
threats or security incidents. Implementing custom actions in response to
threats 1s easier than you might think.

Although The Falco Project does not provide a specific tool for this
purpose, a few emerging projects in the community are implementing this
concept. Such systems are sometimes called response engines and usually
specialize in managing threats in Kubernetes.

A response engine provides a straightforward mechanism to perform a
predefined task when a Falco rule condition is violated. You can create a
simple implementation using Falcosidekick to forward Falco notifications

to a FaaS platform or serverless solution that, in turn, performs the required
action. For example, you can automatically terminate a Kubernetes Pod
whenever a Falco rule determines that the Pod is compromised, by
implementing a cloud function that uses the Kubernetes API to delete the
compromised Pod. Figure 12-4 illustrates this approach and shows some
cloud function providers supported by Falcosidekick.

AWS Lambda

Kubeless

|

m Falcosidekick

OpenFaaS

e
T

Figure 12-4. Example of a functional scheme for a response engine for Kubernetes that uses
Falcosidekick outputs to perform actions

You might want to be notified regardless of the rule’s priority level, but you
will probably only want to perform actions for specific rules. For example,
you might want only rules with a CRITICAL priority level to terminate Pods.
Falcosidekick helps with this because it allows you to filter notifications
based on their priority value, so you can control the information each
destination receives.

We advise you to analyze your needs and design your response engine to
meet them. Falco and tools like Falcosidekick will provide everything you
need to support your solution.

Conclusion

This chapter concludes Part I1I. You’ve learned all the fundamental aspects
of running Falco in production and can now configure and customize it for

almost any need and scenario. You’ve also discovered how to consume
Falco events properly and integrate them with your ecosystem.

In Part IV, you will go beyond the knowledge of the average user and learn
how to extend Falco to satisfy any advanced requirement.

1 A Grafana dashboard is a set of organized UI elements to visualize the data. Dashboard
configurations can be stored in a file and shared. You can get most of the available dashboards

from Grafana’s online gallery.

2 The actual URLSs of the Falcosidekick example manifest files for Kubernetes may change
from time to time, but you can always find them under the Falcosecurity GitHub organization.
Note that any Helm chart can generate such files. Indeed, like Falco’s manifest files,
Falcosidekick’s files are rendered starting from its chart.

https://oreil.ly/2sVSm
https://oreil.ly/F25kV

Part IV. Extending Falco

Chapter 13. Writing Falco Rules

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the
authors’ raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 13th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at sgrey(@oreilly.com.

Welcome to Part IV of the book! Now that you’ve learned what Falco is and
does (Part I), understand the intricacies of its architecture (Part I1), and are a
pro at deploying and running it (Part III), it’s time, once more, to step up
your game.

The final part of this book (Chapters 13 through 15) is about going beyond
what comes out of the box. You will learn how to customize Falco for your
specific needs and how, if you desire, you can contribute your
improvements to the project so that the community can benefit from them.
This is where you get to unleash your creativity.

We’ve already covered rules extensively in the book, in particular in
Chapter 7. But you unlock the true power of Falco when you become
capable of creating your own rules and adapting the existing ones to your
environment—which is what we’re going to show you how to do here.

This chapter assumes you have a good understanding of fields and filters
(covered in Chapter 6) and of the basics of rules and rules files (Chapter 7).

mailto:sgrey@oreilly.com

If you feel you need a refresher, just go back to those chapters. We’ll wait
for you here until you’re ready.

Customizing the Default Falco Rules

Although Falco’s default set of rules is rich and constantly expanding, it’s
not uncommon to encounter situations where those rules require
customization. Here are some examples:

* You want to expand the scope of a rule or increase its coverage.

e You want to tighten the number of rules that Falco loads to decrease its
CPU usage.

* You want to reduce alerting noise by controlling a rule’s behavior or
adding exceptions to it.

Falco offers a framework to accomplish these things without having to fork
the default rules files and maintain your own copies. Chapter 7 taught you
how to replace and append to macros, lists, and rules, as well as how to
disable rules. This is especially useful since, as you learned in Chapter 10,
the order in which rules files are loaded is important, and you control that
order. This means you can change an existing rule in a separate file that is
loaded later in the initialization chain.

The default Falco configuration is crafted to take advantage of this
mechanism, providing two places out of the box where you can customize
existing rules without touching the default ruleset. The first is
falco_rules.local.yaml. This file, which is initially empty, is loaded after
falco rules.yaml and is therefore a good place to disable or modify rules in
the default ruleset. The second is /etc/falco/rules.d. Falco, by default, loads
all the rules files that it finds in this directory after loading falco rules.yaml
and falco rules.local.yaml. This makes it another good place for
customizations.

Writing New Falco Rules

At its core, writing a new rule is just a matter of crafting the condition and
the output, so conceptually it is a very straightforward process. In practice,
however, there are several factors to take into account. Improvised rule
development often results in imperfect or even nonfunctional rules.
Seasoned Falco users tend to develop their own processes for rule writing,
and we recommend you do the same. What the best process is depends on
your setup, target environment, and taste, so we won’t be able to offer you
absolute prescriptions. Instead, we’ll share the way we do it, hoping it can
serve as inspiration and guidance.

Our Rule Development Method

The method for rule development used by this book’s authors consists of
nine steps:

1. Replicate the events you want to detect.

. Capture the events and save them in a trace file.

. Craft and test the condition filter with the aid of sysdig.
. Craft and test the output with the aid of sysdig.

. Convert the sysdig command line into a rule.

. Validate the rule in Falco.

. Modularize and optimize the rule.

. Create a regression.

O o0 9 AN Dn B~ W

. Share the rule with the community.

In the following sections we’ll expand on each item in this list and provide
a real-world example, walking you through crafting a new rule that detects
attempts to create symlinks’ inside the /proc, /bin, and /etc directories. This

is, at minimum, strange behavior and could potentially indicate fishy
activity. Here’s how you would apply our method to build such a rule.

1. Replicate the events you want to detect

It’s almost impossible to create a reliable rule without testing and validating
it, so the first step is to re-create the scenario (or scenarios) that the rule
should detect. In this case, you want to detect the creation of symlinks in
three specific directories. You can recreate that scenario from within a
terminal using the Ln command:

$ 1n -s ~ /proc/evillink
$ 1n -s ~ /bin/evillink
$ 1n -s ~ /etc/evillink

2. Capture the events and save them in a trace file

Now you can capture the suspicious activity using sysdig. (If you need a
refresher on sysdig and trace files, go back to “Observing System Calls™.)
sysdig allows you to easily store the activity in a trace file using the -w
command-line flag. To see how it works, issue this command in a terminal:

$ sysdig -w evillinks.scap

In another terminal, run the three Ln commands again, then go back to the
first terminal and stop sysdig with Ctrl-C. You now have your activity in a
trace file that you can inspect as many times you want:

$ sysdig -r evillinks.scap

You will notice that the trace file contains all of the host’s activity, not only
your Ln commands. You will also notice that the file is pretty big. You can
make it smaller and easier to inspect by using a filter when you run the
capture:

$ sysdig -w evillinks.scap proc.name=ln

Now you have a noise-free file that is less than 1 MB in size, containing
only the specific activity that you need to craft your rule. Saving the rule-
triggering activity in a trace file has several advantages:

It requires replicating complex behaviors only once. (Not all
suspicious behaviors are as simple to detect as running ln three
times!).

It allows you to focus on the events and stay in a single terminal,
without having to replicate the rule-triggering commands many times.

It allows you to develop rules on a different machine. You don’t even
need to deploy and configure Falco on the machine where the behavior
is happening! This is really nice if you want to capture behaviors in
“unfriendly” environments like cloud containers or edge devices.

It lets you develop rules with normal user privileges.

It provides consistency, which is useful not only for creating the rule,
but also for implementing regressions when the rule is done.

3. Craft and test the condition filter with the aid of sysdig

Now that you have the data you need, it’s time to work on the condition.
Typically, at this stage you’ll want to answer a couple of questions:

1. What type of system call (or system calls) do you need to target? Of

course, not all Falco rules are based on system calls; for example, you
might be using a plugin. But in general, identifying the type of event
that will trigger the rule is the first order of business.

2. Once you know which event to parse, which of its parameters or

arguments do you need to check?

sysdig can help you answer these questions. Use it to read and decode the
capture file:

$ sysdig -r evillinks.scap

Toward the end of the output file is where the magic happens:

2313 11:21:22.782601383 1 1n (23859) > symlinkat
2314 11:21:22.782662611 1 1n (23859) < symlinkat res=0 target=/home/foo
linkdirfd=-100(AT_FDCWD) linkpath=/etc/evillink

Our system call i1s symlinkat. The system call’s manpage tells you that it’s
a variation of another system call, symlink. You can also see that the
linkpath argument contains the filesystem path of the symbolic link. This
is exactly what you need to know to craft your filter, which should look like
this:

(evt.type=symlink or evt.type=symlinkat) and (evt.arg.linkpath startswith
/proc/ or evt.arg.linkpath startswith /bin/ or evt.arg.linkpath startswith

/etc/)

You can immediately leverage sysdig to validate that this is the right filter:

$ sysdig -r evillinks.scap " (evt.type=symlink or
evt.type=symlinkat) and (evt.arg.linkpath startswith /proc/ or
evt.arg.linkpath startswith /bin/ or evt.arg.linkpath startswith
/etc/)"

438 11:21:13.204948767 2 1ln (23814) < symlinkat res=-2(ENOENT)
target=/home/foo 1linkdirfd=-100(AT_FDCWD) linkpath=/proc/evillink

1679 11:21:19.420360948 0 1n (23850) < symlinkat res=0 target=/home/foo
linkdirfd=-100(AT_FDCWD) linkpath=/bin/evillink

2314 11:21:22.782662611 1 1n (23859) < symlinkat res=0 target=/home/foo
linkdirfd=-100(AT_FDCWD) linkpath=/etc/evillink

Bingo! The output correctly shows the three system calls that should trigger
the rule.

4. Craft and test the output with the aid of sysdig

sysdig, handily, can help you craft the rule’s output too. The sysdig -p flag,
in particular, receives a Falco output—compatible string as input and uses it
to print a Falco-like output to the terminal for each event accepted by the
filter. This makes it effortless to craft and test the rule’s output, knowing

https://oreil.ly/oW7rT

that Falco will show the same thing when the rule triggers. For example,
this looks like a nice output for your rule:

a symlink was created in a sensitive directory (link=%evt.arg.linkpath,
target=%evt.arg.target, cmd=%proc.cmdline)

Test it, together with the filter, in sysdig:

$ sysdig -r evillinks.scap -p"a symlink was created in a
sensitive directory (link=%evt.arg.linkpath,
target=%evt.arg.target, cmd=%proc.cmdline)" " (evt.type=symlink or
evt.type=symlinkat) and (evt.arg.linkpath startswith /proc/ or
evt.arg.linkpath startswith /bin/ or evt.arg.linkpath startswith
/etc/)"

a symlink was created in a sensitive directory (link=/proc/evillink,
target=/home/foo, cmd=1ln -s /home/foo /proc/evillink)

a symlink was created in a sensitive directory (link=/bin/evillink,
target=/home/foo, cmd=1ln -s /home/foo /bin/evillink)

a symlink was created in a sensitive directory (link=/etc/evillink,
target=/home/foo, cmd=1ln -s /home/foo /[etc/evillink)

Note the quotation marks around both the filter and the output condition.
This prevents the shell from getting confused by any characters they
contain.

Your condition and output look pretty good. Time to switch to Falco!

5. Convert the sysdig command line into a rule

The next step 1s converting what you have into a Falco rule. This is little
more than a copy-and-paste exercise, since you already know that the
condition and output work:

- rule: Symlink in a Sensitive Directory

desc: Detect the creation of a symbolic link in a sensitive directory like
J/etc or /bin.

condition: (evt.type=symlink or evt.type=symlinkat) and (evt.arg.linkpath
startswith /proc/ or evt.arg.linkpath startswith /bin/ or evt.arg.linkpath
startswith /etc/)

output: a symlink was created in a sensitive directory
(link=%evt.arg.linkpath, target=%evt.arg.target, cmd=%proc.cmdline)

priority: WARNING

6. Validate the rule in Falco

Save the rule in a YAML file called sym/ink.yaml. Now testing it in Falco is
a matter of loading it with the -r flag, then using the -e flag to use the
capture file as input:

$ falco -r symlink.yaml -e evillinks.scap
2022-02-05T01:09:23+0000: Falco version 0.31.0 (driver version
319368f1ad778691164d33d59945e00c5752cd27)
2022-02-05T01:09:23+0000: Falco initialized with configuration file
Jetc/falco/falco.yaml
2022-02-05T01:09:23+0000: Loading rules from file symlink.yaml:
2022-02-05T01:09:23+0000: Reading system call events from file: evillinks.scap
2022-02-04T19:21:13.204948767+0000: Warning a symlink was created in a
sensitive directory (link=/proc/evillink, target=/home/foo, cmd=ln -s
/home/foo /proc/evillink)
2022-02-04T19:21:19.420360948+0000: Warning a symlink was created in a
sensitive directory (link=/bin/evillink, target=/home/foo, cmd=1ln -s /home/foo
/bin/evillink)
2022-02-04T719:21:22.782662611+0000: Warning a symlink was created in a
sensitive directory (link=/etc/evillink, target=/home/foo, cmd=1ln -s /home/foo
Jetc/evillink)
Events detected: 3
Rule counts by severity:

WARNING: 3
Triggered rules by rule name:

Symlink in a Sensitive Directory: 3
Syscall event drop monitoring:

- event drop detected: 0 occurrences

- num times actions taken: 0

The rule triggered the expected number of times and displayed the correct
output. Congratulations!

Note how, in Falco, you can leverage the same trace file that you created
with sysdig. The -e command-line option tells Falco: “Read system calls
from the given file instead of using a driver. When you reach the end of the
file, print a summary and return.” Very handy for quick iteration!

7. Modularize and optimize the rule

You have a working rule and you’ve tested it, but there’s room to make it
prettier. Step 7 is adding modularity to the rule:

- macro: sensitive_sylink_dir
condition: (evt.arg.linkpath startswith /proc/ or evt.arg.linkpath
startswith /bin/ or evt.arg.linkpath startswith /etc/)

- macro: create_symlink
condition: (evt.type=symlink or evt.type=symlinkat)

- rule: Symlink in a Sensitive Directory

desc: Detect the creation of a symbolic link in a sensitive directory like
/etc or /bin.

condition: create_symlink and sensitive_sylink_dir

output: a symlink was created in a sensitive directory
(link=%evt.arg.linkpath, target=%evt.arg.target, cmd=%proc.cmdline)

priority: WARNING

This moves the condition’s checks into macros, which makes the condition
shorter and more readable. That’s great, but you can do even better:

- list: symlink_syscalls
items: [symlink, symlinkat]
- list: sensitive_dirs
items: [/proc/, /bin/, [etc/]

- macro: create_symlink
condition: (evt.type in (symlink_syscalls))
- macro: sensitive_sylink dir
condition: (evt.arg.linkpath pmatch (sensitive_dirs))

- rule: Symlink in a Sensitive Directory

desc: Detect the creation of a symbolic link in a sensitive directory like
/etc or /bin.

condition: create_symlink and sensitive_sylink_dir

output: a symlink was created in a sensitive directory
(link=%evt.arg.linkpath, target=%evt.arg.target, cmd=%proc.cmdline)

priority: WARNING

What you did here is to move the condition constants into lists. This has
multiple benefits. First, it makes the rule easy to extend, in a noninvasive
way. If you want to add another sensitive directory, you can do it easily by
adding the relevant item to the list or, even better, by creating a second
symlink_syscalls list in append mode. This also gives you an opportunity
to optimize the rule by using operators like in and pmatch that can perform
multiple checks in an efficient way.

8. Create a regression

When you create a new rule, particularly if your goal is including it in the
official ruleset, you might like to be able to test it in the future. For
example, you might want to ensure it still works with new versions of
Falco, or on different Linux distributions. You might also want to measure
its performance (such as its CPU utilization) under stress. The capture file
you created at the beginning of the process is a good base for a regression.

As an alternative, the Falco community has created a tool called event-
generator (mentioned in Chapter 2) that’s useful for testing. If you add an
action for your rule in event-generator, you or other people will be able to
trigger the rule in real time on an arbitrary machine. The tool can replay
your rule-triggering scenario in a flexible way, including triggering the rule
multiple times and at specific frequencies. That way, you can precisely
measure its CPU utilization. You can also check if, under heavy stress, the
rule will slow Falco down to the point where the driver starts dropping
system calls.

A full discussion of event-generator goes beyond the scope of this book, but
you can take a look at its GitHub repository to learn more about it.

9. Share the rule with the community

Congratulations, you’ve completed the development of a brand new rule!
At this point, it is important to remember that Falco is a tool written by the
community for the community. Every new rule you write could be valuable
to many others, so you should consider contributing it to the default ruleset.
Chapter 15 will teach you everything you need to know about contributing
to Falco. As Falco maintainers and community members, we’d like to thank
you in advance for any rules you decide to share with the community.

Things to Keep in Mind When Writing Rules

Now that we’ve covered the basics, let’s discuss some concepts that are a
bit more advanced, but very important to keep in mind when developing

https://oreil.ly/jERpD

rules.

Priorities

As mentioned in Chapter 7, every Falco rule must have a priority. The rule
priority 1s typically reported in conjunction with the output, and can have
one of the following values:

e EMERGENCY

ALERT

e CRITICAL

e ERROR

e WARNING

e NOTICE

e INFORMATIONAL
e DEBUG

Picking the right priorities for your rules is crucial, because typically rules
are filtered based on priority. Assigning too high a priority to a rule could
cause alert flooding and diminish its value.

Here is what the official Falco documentation has to say about how
priorities are used in the default ruleset:

e Ifarule is related to writing state (filesystem, etc.), its priority is
ERROR.

e Ifarule is related to an unauthorized read of state (reading sensitive
files, etc.), its priority is WARNING.

e [farule is related to unexpected behavior (spawning an unexpected
shell in a container, opening an unexpected network connection, etc.),
its priority is NOTICE.

e Ifarule is related to behaving against good practices (unexpected
privileged containers, containers with sensitive mounts, running
interactive commands as root), its priority is INFORMATIONAL.

Noise

Noise is one of the most critical factors to take into account when crafting
rules, as well as a generally complex topic in security. The trade-off
between detection accuracy and false positive generation is a constant
source of tension in detection tools like Falco.

It’s often said that the only ruleset with no false positives is one with no
rules. Completely avoiding false positives is extremely difficult and often
an unrealistic goal, but there are some guidelines you can follow to reduce
the problem:

Guideline 1: Test and validate.

Before using a rule in production, make sure you test it extensively in as
many environments as possible (different OS distributions, kernels,
container engines, and orchestrators).

Guideline 2: Priorities, and priority-based filtering, are your friends.

Avoid deploying a rule for the first time with ERROR or CRITICAL as the
priority. Start with DEBUG or INFO, see what happens, and increase the
value if it’s not too noisy. Lower-priority rules can be easily filtered out
at different stages of the output pipeline, so they don’t run the risk of
waking up the security operations center team in the middle of the night.

Guideline 3: Leverage tags.

The tags that you assign to your rules are included in Falco’s gRPC and
JSON outputs. This means you can use them to complement priorities
and filter Falco’s output in an even more flexible way.

Guideline 4. Plan for exceptions.

Good rules are designed to account for known and unknown exceptions
in a way that is readable, modular, and can easily be extended.

Take a look, for example, at the Write below rpm database rule from the
default ruleset:

- rule: Write below rpm database
desc: an attempt to write to the rpm database by any non-rpm related program
condition: >
fd.name startswith /var/lib/rpm and open_write
and not rpm_procs
and not ansible_running_python
and not python_running chef
and not exe_running_docker_save
and not amazon_linux_running_python_yum
and not user_known_write_rpm_database_activities
output: "Rpm database opened for writing by a non-rpm program
(command=%proc.cmdline file=%fd.name parent=%proc.pname
pcmdline=%proc.pcmdline container_id=%container.id
image=%container.image.repository)"
priority: ERROR
tags: [filesystem, software_mgmt, mitre_persistence]

Note how known exceptions are included in the rule as macros (rpm_procs,
ansible_running_python, etc.), but the rule also includes a macro
(user_known_write_rpm_database_activities) that lets the user add
their own exceptions through the override mechanism.

Performance

Performance is another important topic to consider when writing and
deploying rules, because Falco typically operates with high-frequency data
sources. When you are using Falco with a system call source like the kernel
module or the eBPF probe, your whole ruleset might need to be evaluated
millions of times per second. At such frequencies, rule performance is key.

Having a tight ruleset is definitely a good practice to keep Falco’s CPU
utilization under control, as you learned in Chapter 10. It is also important,
however, to make sure every new rule you create is optimized for

performance. The overhead of your rule is more or less proportional to the
number of field comparisons that the rule’s condition needs to perform for
every input event. Therefore, you should expect that a simple condition like
this:

proc.name=pl

will use around 20% of the CPU of a more complex rule like this one:

proc.name=pl or proc.name=p2 Or proc.name=p3 or proc.name=p4 or proc.name=p5

Optimizing a rule is all about making sure that, in most common situations,
it requires the Falco engine to perform the smallest possible number of
comparisons.

Here are some guidelines you should follow to reduce the CPU utilization
of your rules:

e The rule should always start with a check on the event type (such as
evt.type=open or evt.type in (mkdir, mkdirat)). Falco is smart
about this: it understands when your rule 1s restricted to only some
event types and will only evaluate the rule when it receives a matching
event. In other words, if your rule starts with evt. type=open, Falco
won’t even start evaluating it for any event that is not an open system
call. This is so effective (and important!) that Falco emits a warning
when a rule doesn’t include a check on the event type.

e Include aggressive comparisons that have a high probability of failing
earlier, rather than later, in your rule. A Falco condition works like an
if statement in a programming language: it’s evaluated left to right
until something fails. The sooner you make the condition fail, the less
work it will require to complete. Try to find simple ways to restrict the
scope of your rule. Can you limit it to specific processes, files, or
containers? Can you apply it to only a subset of users? Encode these
restrictions in the rule, toward the beginning.

e Heavy, complex rule logic should be included after (to the right of) the
aggressive comparisons and restrictions. For example, long exception
lists belong at the end of the rule.

e Whenever possible, use multiple value operators like in and pmatch
instead of writing multiple comparisons. In other words, evt.type in
(mkdir, mkdirat) is better than evt. type=mkdir or
evt.type=mkdirat. Multiple value operators are heavily optimized
and become progressively more effective as the number of values
grows.

e In general, small is good. Develop the habit of keeping things as
simple as possible. This will not only speed up processing of your
rules, it will also ensure they are readable and maintainable!

Tagging

Tagging is a powerful tool for crafting rules. It has three important uses:
flexibly filtering the rules Falco loads, adding context to its output, and
supporting notification filtering and prioritization, therefore reducing noise.

Using tags generously will improve your Falco experience and ensure you
get the most out of your rules.

Conclusion

This was an intense chapter! Rule writing is a demanding topic, but it can
also be fun and creative. Plus, writing the perfect rule to perform an
impressive detection will earn you a lot of points with your coworkers.

1 The term symlink is short for symbolic link; in Unix, it indicates a filesystem entry that is a
reference to another file or directory.

Chapter 14. Falco Development

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the
authors’ raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 14th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at sgrey(@oreilly.com.

Extending Falco is the best way to ensure that it perfectly fits your unique
requirements. This chapter will show you three approaches to Falco
development. We’ll begin with an overview of Falco’s codebase and a quick
guide to building Falco from the source, which allows you to work with
Falco’s code directly. This first approach gives you more freedom, but is
more difficult and perhaps less convenient than the other two. The second
approach lets you build an application that processes Falco notifications in
the desired way by interfacing with the gRPC API. The third is the standard
and easiest way of extending Falco: writing your own plugin.

For the last two approaches, we will teach you by using examples. We use
the Go programming language in these code snippets, so some familiarity
with it will be helpful, but it’s not strictly required. This chapter also
assumes that you have read Part Il of this book. If you are concerned that
this material may be too difficult, don’t be scared: we think you’ll find it
understandable and interesting even if you are not a developer.

mailto:sgrey@oreilly.com

PROGRAMMING LANGUAGES FOR FALCO
DEVELOPMENT

Falco’s core is written mainly in C++, with some low-level components
in C (like libscap and the drivers). To fully understand the codebase or
work with the core components, a good knowledge of C/C++ is
required. However, Falco also exposes the gRPC and Plugin APIs,
which you can use to develop components for Falco in virtually any
programming language you like. Using these APIs is our preferred way
of extending Falco and does not require you to stick with C/C++.

Go is the most common language for interfacing with Falco’s APIs,
because it’s been so widely adopted in cloud native software. You will
notice that most Falcosecurity libraries, SDKs, and tools use Go. For
the same reason, we use Go in the code snippets included in this
chapter, and you’ll need to install Go if you want to run them.

If you want to use another programming language, the general concepts
described in this chapter still apply, so we recommend reading on.

Working with the Codebase

Falco 1s open source, and all its source code lives in GitHub under the
Falcosecuriy organization. All you need to start navigating the codebase is a
browser. If you want to store the source code locally and open it with your
preferred editor, you will need to use Git.

The Falcosecurity organization hosts Falco and many other related projects.
The community is very active, so you will also find many experimental
projects. The core of The Falco Project lives in two main repositories:
falcosecurity/falco and falcosecurity/libs.

The falcosecurity/falco Repository

The falcosecurity/falco repository contains the source code of the falco
user-space program (the one you usually interact with). It’s the main and
most important repository. The project is organized as follows:

/ecmake

Here you can find cmake modules that the Falco build system uses to
pull dependencies and implement specific functionalities, including
cmake files to pull the falcosecurity/libs source code during the build
process.

/docker

This folder is organized into various subdirectories, each containing the

source code of a Falco container image. Some are not published because

they are for development use only. See the README file for details.
/proposals

This folder includes design proposals made by the community and
approved by maintainers. You may find useful information here that
helps you understand how the Falco authors made certain architectural
decisions and the rationale behind them.

/rules

The default rules files live here.

/scripts
Various script files live inside this folder. For example, this is where
you’ll find the falco-driver-loader script’s source code.

/test and /tests
These two folders contain regression tests and unit tests for Falco,

respectively.

/userspace

https://oreil.ly/lqnL4
https://oreil.ly/oiGQQ

The actual C++ source code of Falco lives inside this folder. Its contents
are organized into two subdirectories: engine, which contains the rule
engine implementation, and falco, which contains the implementations
of high-level features like the output channels, the gRPC server, and the
CLI application.

Although this is the main Falco repository, not all of the project’s source
code lives here. Most is actually in the falcosecurity/libs repository, which
contains the implementations of Falco’s core low-level logic.

The falcosecurity/libs Repository

Throughout this book, we have mentioned libscap, libsinsp, and the drivers
many times. The falcosecurit)/libs repository hosts the source code of those
components. It is organized as follows:

/cmake/modules
This folder contains cmake modules to pull external dependencies and
module definitions for /ibscap and libsinsp that consumer applications
(like Falco) can use.

/driver
This folder includes the source code for the kernel module and eBPF
probe (mainly in C).

/proposals
Similar to the one in the Falco repository, this folder contains the design
proposal documents.

/userspace

Organized into several subdirectories, here you can find the source code
(in C and C++) of libsinsp and libscap along with other shared code.

https://oreil.ly/HSLDT

This repository contains all the low-level logic required for kernel
instrumentation and data enrichment. The filtering grammar, plugin
framework implementation, and many other functionalities are hosted here.
The libs codebase is vast, but don’t let that frighten you: all you need to
understand it is a good knowledge of C/C++.

Building Falco from Source

Compiling Falco from its source is similar to compiling any other C++
project that uses cmake. The build system requires a handful of
dependencies: cmake, make, gcc, wget, and of course git. (You also need
Git to get a local copy of the Falco repository.) You can find instructions on
how to install those dependencies in the documentation.

Once you have ensured that the required dependencies are installed on your
system, use the following command to get a local copy of the repository:

$ git clone git@Rgithub.com:falcosecurity/falco.git

Git will clone the repository into a newly created folder called falco. Enter
that directory:

$ cd falco

Prepare a directory to contain the build files, then enter it:

$ mkdir -p build
$ cd build

Finally, inside the build directory, run:

S cmake -DUSE_BUNDLED_DEPS=On ..
$ make falco

This command will likely take a substantial amount of time the first time
you run it, as cmake downloads and builds all the dependencies. This is

https://oreil.ly/UMJI2

because we configured it with -DUSE_BUNDLED_DEPS=0n; alternatively, you
can set -DUSE_BUNDLED_DEPS=0ff to use system dependencies, but if you
do this you will need to manually install all the required dependencies on
your system before building Falco. You can find an updated list of
dependencies and other useful cmake options in the documentation.

After the make command completes, if there were no errors, you should find
the newly created Falco executable in ./userspace/falco/falco (the path is
relative to the build directory).

Now, if you also want to build the driver from the source and you already
have the kernel headers installed in your system, run:

$ make driver

This command only builds the kernel module, by default. If you want to
build the eBPF probe instead, use:

S cmake -DBUILD BPF=True ..
$ make bpf

In both cases, you will find the newly built driver under ./driver (the path is
relative to the build directory).

Extending Falco Using the gRPC API

Although you might be tempted to introduce a new feature directly into the
codebase, there are more convenient ways. For example, if you want to
extend Falco’s output mechanism, you can create a program that works on
top of Falco and implements your business logic. In particular, the gRPC
API allows your program to consume Falco notifications and receive
metadata easily.

This section will use an example program to show you how to start
developing with the Falco gRPC API. To follow along, you’ll need a
running Falco instance with the gRCP server and gRPC output channel

enabled (see Chapter 8). You will use gRPC via a Unix socket, so make
sure you have installed and configured Falco accordingly.

We use the client-go library in the following example, which makes using
the gRPC API straightforward:

package main

import (
"context"
"fmt"
"time"

"github.com/falcosecurity/client-go/pkg/api/outputs" @
"github.com/falcosecurity/client-go/pkg/client" @

)
func main() {

// Set up a connection to Falco via a Unix socket

c, err := client.NewForConfig(context.Background(), &client.Config{
UnixSocketPath: "unix:///var/run/falco.sock", @

D

if err != nil {
panic(err)

}

defer c.Close()

// Subscribe to a stream of Falco notifications
err = c.OutputsWatch(context.Background(), ©
func(res *outputs.Response) error {
// Put your business logic here
fmt.Println(res.Output, res.OutputFields) @
return nil
}, time.Second)
if err != nil {
panic(err)

}

We start by importing the client-go library,.
The main function sets up a connection (represented by the variable c)

to Falco’s gRPC server via the Unix socket using the default path.
The connection c allows it to call the OutputsWatch function, which

subscribes to a stream of notifications and processes any incoming

https://oreil.ly/1bSay
https://oreil.ly/iQD2m

notification using a callback function.
This example uses an anonymous function that prints the notification to

standard output. In a real-world application, you would implement your
own business logic to consume Falco notifications.

Using the gRPC API to implement programs that interact with Falco is
convenient and straightforward. If, instead, you need to make Falco work
with other data sources, the plugin system is likely what you are looking
for.

Extending Falco with Plugins

Plugins are the main way to extend Falco, and we’ve mentioned them many
times throughout the book. To recap briefly, plugins are shared libraries that
conform to specific APIs. In the Falco plugin framework, the primary
responsibilities of plugins are adding new data sources by connecting Falco
to external sources and producing events, and extracting data from events
by exporting lists of fields and decoding event data to produce field values
when Falco requires them.

Plugins contain the logic to produce and interpret data. This is powerful
because it means that Falco is only concerned with gathering field values
from plugins and composing them into rule conditions. In other words,
Falco only knows which fields can be used and how to get their values;
everything else is delegated to the plugins. Thanks to this system, you can
connect Falco to any domain.

There are a few important aspects to consider when designing a plugin.
First, a plugin with event sourcing capability implicitly defines the event
payload format (the serialized raw event data that the plugin returns to the
framework). The same plugin, or other plugins with field extraction
capability compatible with that data source, will be able to access the
payload later, when extracting fields. Second, a plugin with field extraction
capability explicitly defines fields that are bound to a data source. Finally,

https://oreil.ly/f4htn
https://oreil.ly/EkUs3

rules rely on data source specifications to consume the events in the format
they expect.

Since describing every single technical aspect of plugin development would
require a dedicated book, in this section we’ll just offer an educational
example of how to implement a plugin that can both generate events and
extract fields. For more extensive coverage, refer to the documentation.

Our example will implement a plugin that reads from the bash history file
(by default located at ~/.bash_history). Each time a user enters a command
in the shell, bash stores that command line. When the shell session ends,
bash appends the entered command lines in the history file. It’s basically a
log file. Although it has no compelling use cases, it’s a simple way to learn
how to create a plugin that generates events from a log file. So, let’s start
having fun with a bit of Go code.

Preparing a Plugin in Go

First, create a file (we called ours myplugin.go) and import a bunch of Go
packages to simplify development. You’ll also import fail, a library that
emulates the tail command (our example uses it to read from the log file),
and a set of packages from Falcosecurity’s Plugin SDK for Go that let you
implement a source plugin with that extractor capability. You must use the
main package, or Go won’t allow you to compile it as a shared object:

package main

import (
"encoding/json"
llfmtll
ll_'LOH
IIOSH
"time"

"github.com/hpcloud/tail"
"github.com/falcosecurity/plugin-sdk-go/pkg/sdk"

"github.com/falcosecurity/plugin-sdk-go/pkg/sdk/plugins"
"github.com/falcosecurity/plugin-sdk-go/pkg/sdk/plugins/extractor"

https://oreil.ly/004ur
https://oreil.ly/BdIXO
https://oreil.ly/OWco5
https://oreil.ly/lnyhl

"github.com/falcosecurity/plugin-sdk-go/pkg/sdk/plugins/source"
)

The SDK defines a set of interfaces that help you implement a plugin by
following a simplified, well-defined pattern. As you will see in a moment,
you have to satisfy those interfaces by adding methods—also called
functions with receivers in Go—to a couple of data structures that represent
your plugin. Under the hood, the SDK exports those methods as the calling
convention functions (or simply C symbols) required by the plugin
framework. (See “‘Falco Plugins” if you need a refresher on this.)

Plugin State and Initialization

The SDK requires a data structure that represents the plugin and its state. It
can implement various composable interfaces, but all types of plugins must
implement, at minimum, Info to expose general information about the
plugin and Init to initialize the plugin with a given configuration string.

The example calls this data structure bashPlugin. You’ll also define
another data structure (called bashPluginCfg) that represents the plugin’s
configuration, to store options inside it. This isn’t mandatory, but it’s
usually convenient:

// bashPluginCfg represents the plugin configuration.
type bashPluginCfg struct {
Path string

}

// bashPlugin holds the state of the plugin.
type bashPlugin struct {

plugins.BasePlugin

config bashPluginCfg

}

Now you’ll implement the first required method that exposes general
information about the plugin:

func (b *bashPlugin) Info() *plugins.Info {
return &plugins.Info{

https://oreil.ly/t5aAZ

ID: 999,

Name: "bash",
Description: "A Plugin that reads from ~/.bash_history",
Version: "0.1.0",

EventSource: "bash",

TIP

The ID field is required for all source plugins and must be unique across them to ensure
interoperability. The special value 999 is reserved for development purposes only; if you
intend to distribute your plugin, you should register it in the plugins registry to get a
unique ID.

Another important field for interoperability is EventSource, where you can
declare the name of the data source. Extractor plugins can use that value to
determine whether they are compatible with the data source.

The other required method is Init. Falco calls this method only once, when
loading the plugin, and passes the configuration string (the one defined in
the Falco configuration for the plugin). Commonly, the configuration string
1s JSON-formatted. Our example first sets a default value for a member of
b.conf1ig (an instance of the data structure for the plugin configuration that
we declared earlier). Then, if the given config string is not empty, the
function decodes the JSON value into b.conf1ig:

func (b *bashPlugin) Init(config string) error {

// default value
homeDir, _ := os.UserHomeDir()
b.config.Path = homeDir + "/.bash_history"

// skip empty config
if config == "" {
return nil

}

// else parse the provided config

https://oreil.ly/7C9n1

return json.Unmarshal([]byte(config), &b.config)

Adding Event Sourcing Capability

Specifically for plugins with event sourcing capability, the SDK requires
another data structure that represents a capture session (a stream of events).
It also requires the following methods:

e Open to start and initialize a capture session

e NextBatch to produce events

Falco calls Open immediately after initialization. That represents the
beginning of a capture session. The method’s main responsibility is
instantiating the data structure that holds the session state (bashInstance
in our example). Specifically, here we make a *tail.Tail instance (that
mimics the behavior of tail -f -n 0) and store it in t. Then we create a
bashInstance instance (to which we can assign t) and return it:

// bashInstance holds the state of the current session.
type bashInstance struct {

source.Baselnstance

t *tail.Taill

ticker *time.Ticker

}

func (b *bashPlugin) Open(params string) (source.Instance, error) {
t, err := tail.TailFile(b.config.Path, tail.Config{
Follow: true,
Location: &taill.SeekInfo{
Offset: 0,
Whence: os.SEEK_END,

1,
D
if err != nil {
return nil, err
}

return &bashInstance{
t: t,
ticker: time.NewTicker(time.Millisecond * 30),

}, il
}

The plugin system stores the value returned by Open and passes it as an
argument to the most important method for a source plugin: NextBatch.
Unlike the other methods, this belongs to the session data structure
(bashInstance) and not to the plugin data structure (bashPlugin). During
the capture session, Falco repeatedly calls NextBatch, which in turn
produces a batch of new events. A batch’s maximum size depends on the
size of its underlying reusable memory buffer. However, a batch can have
fewer events than its maximum capacity; it can contain just one event or
even be empty. This method usually implements the core business logic of a
source plugin, but this example just implements some simple logic: it tries
to receive lines from the b. t.Lines channel and add them to the batch. If
there are none, it will time out after a while:

func (b *bashInstance) NextBatch(bp sdk.PluginState, evts sdk.EventWriters)
(int, error) {

i:=0

b.ticker.Reset(time.Millisecond * 30)

for 1 < evts.Len() {
select {
case line := <-b.t.Lines:
// if line == nil {
// // No new lines, return early
// return i1, sdk.ErrTimeout

//}

if line.Err != nil {
return 1, line.Err

}

// Add an event to the batch

evt := evts.Get(1)

if , err := evt.Writer().Write([]byte(line.Text)); err != nil {
return i, err

}
1++
case <-b.ticker.C:
// Timeout occurred, return early
return i1, sdk.ErrTimeout

}

}

// The batch is full
return i, nil

}

As you can see, the SDK provides an sdk.EventWriters interface. This
automatically manages the reusable memory buffer for the batch and allows
the implementer to write the raw event payload as a sequence of bytes. The

function evts. Len returns the maximum number of events allowed in a
batch.

The choice of the format of the event payload is up to the plugin author,
because the Plugin API allows both the encoding (in our example, for
simplicity, we store the whole line as plain text in the payload) and the
decoding of the data (as we will see in a moment). This permits you to
create fields that you can use in rules. Choosing the correct format is
essential because it has implications both for performance and compatibility
with other plugins (other authors may want to implement an extractor
plugin that works with your events).

So far, you have seen the minimum set of methods required to implement a
source plugin. However, the plugin would not really be useful at this point
if we did not add a way to export fields to use in rule conditions and output.

Adding Field Extraction Capability

Plugins with field extraction capability can extract values from the event
data and export fields that Falco can use. A plugin can have only event
sourcing capability (described in the previous section), only field extraction
capability, or both (like our example plugin). A plugin with field extraction
capability will work on data sources provided by other plugins, while a
plugin with both capabilities usually works only on its own data source.
However, the mechanism is the same, regardless of the data source. The
SDK lets you define the following methods, which apply in both cases:

e Fields to declare which fields the plugin is able to extract

e Extract to extract the value of a given field from the event data

Let’s implement those methods in our example plugin. The first method,
Fields, returns a slice of sdk.FieldEntry. Each entry contains the
specification of a single field. The following code tells Falco that the plugin
can extract a field called shell.command (this example adds just one field):

func (b *bashPlugin) Fields() []sdk.FieldEntry {
return []sdk.FieldEntry{
{Type: "string", Name: "shell.command", Display: "Shell command line",
Desc: "The command line typed by user in the shell"},

Now, to make the extraction work, we need to implement the Extract
method, which provides the actual business logic to extract the field. The
method receives as arguments an extraction request (which contains the
identifier of the requested field) and a reader (to access the event payload).
Implementing it is straightforward since this example has just one field and
will simply return all the content of the event payload. In a real-world
scenario, you would usually have more fields and specific logic to extract
each of them:

func (m *bashPlugin) Extract(req sdk.ExtractRequest, evt sdk.EventReader)
error {
bb, err := 1o.ReadAll(evt.Reader())
if err != nil {
return err

}

switch req.FieldID() {
case 0: // shell.command
req.SetValue(string(bb))
return nil
default:
return fmt.Errorf("unsupported field: %s", req.Field())
}
}

With the field extraction capability in place, our example plugin is nearly
ready. Let’s see how to complete and use it.

Finalizing the Plugin

You’re almost there. Next, you’ll create an instance of the plugin and
register its capabilities with the SDK. You can do that during the Go
initialization phase by using the special init function. (Do not confuse this
with the Init method!) Since our example plugin has both source and
extractor capabilities, we have to inform the SDK of both using the
provided functions:

func init() {
plugins.SetFactory(func() plugins.Plugin {
p := &bashPlugin{}
extractor.Register(p)
source.Register(p)
return p

)
}

func main() {}

Note the empty main function. As you will see in a moment, the Go
building system requires this to build the plugin correctly, but it will never
call main, so you can always leave it empty.

The last step to make your code a real Go project is to initialize the Go

module and download the dependencies:

$ go mod init example.com/my/plugin
$ go mod tidy

These commands create the go.mod and go.sum files, respectively. The

code for your plugin is now ready. It’s time to compile it so that you can use
it with Falco!

Building a Plugin Written in Go

https://oreil.ly/LDPaK

A plugin is a shared library (also called a shared object)—specifically, a
compiled file—that exports a set of C symbols required by the plugin
framework. (The SDK we used in the example hides those C symbols by
using high-level interfaces, but they are still present underneath.)

The Go compiler has a specific command called cgo for creating Go
packages that interface with C code. It allows you to compile your plugin
and get a shared library file (a .so or .dll file). The command is pretty
straightforward. From the same folder where the source code lives, run:

$ go build -buildmode=c-shared -o libmyplugin.so

This command creates libmyplugin.so, which you can use with Falco. (By
convention, shared object files in Unix-like systems start with /ib and have
.so as their extension.) You learned about plugin configuration in

Chapter 10, but the following section will give you some hints about using
plugins while developing.

Using Plugins While Developing

By default, Falco looks for installed plugins at /usr/share/falco/plugins.
However, you can specify an absolute path in the configuration and place
your plugin wherever you want. (That’s convenient while developing, since
you won’t need to install the plugin in the default path). We suggest
building the plugin (using the command in the previous section) in the same
folder you are using to develop it. Then, in the same folder, create a copy of
falco.yaml, add your plugin configuration accordingly, and set the
library_path option to the absolute path of your plugin. For example:

plugins:
- name: bash
library_path: /path/to/your/plugin/1libmyplugin.so
init_config: ""

load_plugins: [bash]

https://oreil.ly/sD0aW

Now, before using your plugin, you need a rules file that matches the data
source provided by the plugin. (Falco would load the plugin even without
the rules file, but you wouldn’t get any notifications.) You can create a rules
file in the same folder—for instance, myplugin rules.yaml—and add a rule
like the following to it:

- rule: Cat in the shell
desc: Match command lines starting with "cat".
condition: shell.command startswith "cat "
output: Cat in shell detected (command=%shell.command)
priority: DEBUG
source: bash

Once you have prepared both your customized falco.yaml and
myplugin_rules.yaml, the very last step is to run Falco and pass those files
in the respective options:

$ falco -c falco.yaml -r myplugin rules.yaml

Done! This way of running a plugin in Falco is very convenient during
development, since it does not require you to install any files or mess with
your local Falco installation.

TIP

If you built the plugin in our example, to trigger the rule, you can run:

$ bash
$ cat --version
S exit

Conclusion

There are several ways of extending Falco. Writing a plugin is generally the
best option, especially if you want Falco to work with a new data source to

enable new use cases. The gRPC API may help you if you need to interface
with outputs. On rare occasions, you may need to modify the Falco core and
its components directly.

Whatever the case, you will need to read the documentation. You may
sometimes need to study and understand advanced topics. Since Falco 1s
open source and a collaborative project, you always have the opportunity to
get in touch with its vibrant community. Sharing ideas and knowledge with
others will help you find answers faster.

You may also discover that other people have your exact needs and are
willing to help you improve or extend Falco. That would be a perfect
opportunity to contribute to the Falco project. Everyone can contribute to
Falco. Not only is it a rewarding experience, but contributing is a great help
to the project and all of its users, including you. Want to know how? Read
the next chapter!

Chapter 15. How to Contribute

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the
authors’ raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 15th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at sgrey(@oreilly.com.

Reaching this point in the book means you’re on your way to mastering all
aspects of Falco. This chapter will give you some advice on contributing to
The Falco Project. Contributing means much more than just writing code (a
common misconception)—in fact, there are many valuable ways to
contribute. We’ll explain where to start and how to satisfy the Falcosecurity
organization’s specific contribution requirements.

Contributing to open source software is a rewarding experience. Not only
will you improve Falco, but you’ll also meet people with similar interests,
share feedback and ideas with others, and improve your own skills. If you
are new to open source or want to learn more, we suggest taking a look at
the Open Source Guides.

What Does It Mean to Contribute to Falco?

Falco 1s a Cloud Native Computing Foundation project. The CNCF serves
as a vendor-neutral place for cloud native software. It empowers self-

mailto:sgrey@oreilly.com
https://oreil.ly/ZBe39
https://www.cncf.io/

governing models for its hosted projects and helps sustain healthy open
source communities. Falco is primarily driven by its community, which
includes users, maintainers, and developers who curate and continuously
improve it by:

e Sharing feedback to improve the design and existing features
e Testing Falco to discover issues

e Reporting bugs

e Writing project documentation

e Experimenting with new ideas

e Test-driving new features

e Proposing changes

e Writing code

And the list goes on. In summary, contributing means sharing knowledge
and collaborating for the benefit of The Falco Project.

Where Should | Start?

You should start by joining the Falco community. You can do that by
joining the Falco Slack channel and introducing yourself. The community is
very welcoming. We recommend subscribing to the official mailing list.
Community members, including maintainers, also get together in a weekly
call, which everyone can join. You can find details about the weekly
community call and other initiatives in the community GitHub repository.

As a friendly reminder, the community is made up of human beings: be
kind with them, and they will do the same with you. Everyone participating
in the community must adhere to its Code of Conduct, so make sure you
read and understand it.

https://oreil.ly/00Az6
https://oreil.ly/R5CSB
https://oreil.ly/VMhp4
https://oreil.ly/GgbyC

Contributing to Falcosecurity Projects

As you know by now, Falco and all its related projects are hosted under the
Falcosecurity organization on GitHub. Each project has its own public
repository—you can even find a repository with the source code of the
Falco website. If you don’t have a GitHub account yet, you’ll need to create
one. We also advise you to take your time and get familiar with how
GitHub works. You’ll need a working knowledge of Git, particularly if you
plan to contribute code.

The Falcosecurity organization has an automated support mechanism (or
bot) to help you and make the contribution process easier. You will
probably need a bit of time to get acquainted with it. If you need help, feel
free to ask! An actual human from the community will be happy to help
you.

Before preparing any contribution, make sure to check out the online
contribution guidelines, since they change from time to time. However,
keep reading and we will explain the most important aspects.

Issues

GitHub issues are the main way to interact with a project. Opening an issue
to report a bug or propose an enhancement is one of the principal forms of
contribution. Using issues correctly is also vital for the project, since most
feedback comes from them.

Each Falcosecurity repository defines kinds of issues. The most common
kinds are Bug Report, Documentation Request, Failing Test, and Feature
Request. You select the kind when opening an issue. Depending on the kind
you select, you will see an issue description along with a form for you to fill
out. The form usually includes questions: for example, it might ask you to
describe a bug, how to reproduce it, the Falco version that presents the bug,
and so on. This information helps others understand your issue and work on
it, so it’s crucial to answer all of the questions to save everyone time and
increase the chances of successful resolution.

https://oreil.ly/KNTDD
https://oreil.ly/47j3K
https://oreil.ly/F61GW
https://oreil.ly/yRema
https://oreil.ly/cOTct

Once an issue has been opened, a collaborative process starts. Any
community members interested in the topic can participate, not just
maintainers. Participating in this process is a welcome way to get involved.

The initial stage of this process is called #riaging. It involves verifying and
categorizing the information reported in the issue. For example, in the case
of a bug, community members try to reproduce it and check if it appears in
the manner described. In some cases, the process ends with someone
correctly answering a question or simply pointing the reporter to resources
that solve the problem. In other cases, someone volunteers to implement a
requested feature or fix a bug and takes ownership of submitting a pull
request (see the next section).

You can be involved at any stage of this process. As long as it is
constructive, everyone can contribute.

Pull Requests

Pull requests (PRs) are the only way to commit changes to a Falcosecurity
project. When you want to submit a new feature or a fix, you have to fork
the related repository, create a branch in your fork, and add your commits.
Once you’re confident your change works as expected, you are ready to
submit a PR. Similar to issues, PRs come with a predefined template to fill
out. Be sure to read the instructions carefully. The template also includes
some commands to help you interact with the automation.

After you open a PR, you will need to wait for a maintainer to review it.
Maintainers have a lot of ongoing issues and PRs to look at, so be patient if
they do not reply quickly! They might approve the PR directly or ask you to
change something in your code. The review process is collaborative:
maintainers and the PR author (and sometimes other users) share feedback
and comments until the PR gets approved and merged. Any time you’re in
doubt, ask for support: the maintainers will explain how to proceed.

There are a few general guidelines to follow when making a PR:

https://oreil.ly/bcerI
https://oreil.ly/yfuIq
https://oreil.ly/zqqJL

e Each repository may have its own coding style and guidelines; make
sure you read and understand them.

e Avoid proposing too many code changes in a single PR; submitting
several smaller, self-contained PRs usually works better.

e Maintainers highly recommend using the Conventional Commits style
in your Git commit messages.

e You must sign off on all of your Git commits, and your PR must not
include merge commits (which we’ll discuss in a moment).

The following subsections explain the main requirements you must satisfy
when preparing your code using Git.

Git conflict resolution and linear history

Sometimes you may need to synchronize with the upstream (remote) branch
when working on your PR. If the remote branch has diverged from your
local one, conflicts might arise. Git allows you to synchronize and resolve
conflicts by merging or rebasing. Both methods solve the same problem,
but they produce different outcomes.

Merging happens when the histories of the local and remote branches have
diverged, and you use the git merge command or the git pull command
to reconcile nonlinear histories. However, merging has the drawback of not
leaving the repository history clean, making it harder to navigate with
commands like git bisect or git log. For these reasons, the
Falcosecurity organization does not allow merging in its projects.

In contrast, rebasing moves your commits, placing them on top of the
history of the other branch (instead of introducing a merge commit). That
ensures the Git history is always linear. When developing your PR, you
must always use rebasing to synchronize with the upstream or resolve
conflicts with the main branch. The following command works in both
cases (replace <branch> with the name of the remote branch):

https://oreil.ly/BB160

$ git fetch origin
$ git rebase -i origin/<branch>

This command also removes merge commits if you have accidentally
introduced them. You can use its shortened version, git pull --rebase,
when you only need to pull changes from your remote branch (for example,
when working with collaborators on the same branch).

To reiterate: the Falcosecurity organization enforces a linear history and
does not allow merge commits for any projects. If your PR has a merge
commit, the automation will block the PR and maintainers will not be able
to merge it until you fix the issue. Always use rebasing, or your changes
will not be accepted.

The Developer Certificate of Origin

In 2004, the Linux Foundation (the parent organization of the CNCF)
introduced the Developer Certificate of Origin (DCO), a lightweight way
for contributors to state that they have written (or have the right to submit) a
piece of code. Projects that enforce the DCO require contributors to sign off
on their commits, indicating that they agree to the DCO’s terms for that
single contribution. The Git CLI has an embedded sign-off functionality
that you can use via the -s option or by manually adding the following line

to the commit message:

Signed-off-by: Full Name <example@example.net>

The line must follow this format and include your name and email address.

As part of the CNCEF, Falco and all its related projects require the DCO. The
Falcosecurity organization implements an automation mechanism to check
the DCO on PRs. When it is missing in a commit, the automation blocks the
PR. So, don’t forget to sign off on every single commit; otherwise,
maintainers cannot accept your contributions.

If you submit a PR and the DCO check fails because you missed signing off
on one or more commits, don’t worry. You can adjust it. If you just need to

https://oreil.ly/Qttlz
https://oreil.ly/5VcWl

amend the last commit, use:

$ git commit --amend --signoff
$ git push --force-with-lease

If you need to fix all the commits in your PR, use:

$ git rebase --signoff origin
$ git push --force-with-lease

Conclusion

Congratulations, you’ve reached the end of the book! It’s been a long
journey that covered architecture, syntax, real-world usage, customization,
code development, and many more interesting topics. We sincerely hope
you’ve enjoyed reading it and, more importantly, that the content is
valuable to you, whether you came to this book as a beginner or an
advanced user.

For us, this is a bittersweet moment. While we are sad to say goodbye,
we’re grateful we had a chance to go through this journey with you, and we
are proud to contribute to making your software a little more secure.

You are now ready to start another incredible adventure. As Falco
maintainers, we welcome you to the project and hope to meet you in one of
the community forums.

About the Authors

Loris Degioanni is the CTO and founder of Sysdig. He is also the creator
of the popular open source troubleshooting tool sysdig, and the CNCF
runtime security tool Falco. Prior to founding Sysdig, Loris was one of the
original contributors to Wireshark, the open source network analyzer. Loris
holds a PhD in computer engineering from Politecnico di Torino and lives
in Davis, California.

Leonardo Grasso is a Falco core maintainer and an open source software

engineer at Sysdig. He primarily takes care of Falco and spends the rest of
his time contributing to various projects. Leonardo has a strong passion for
software design and has long professional experience in the R&D field. He
currently lives in Milan, Italy.

Colophon

The animal on the cover of Practical Cloud Native Security with Falco is a
red-necked falcon (Falco chicquera).

Red-necked falcons are medium-size, long-winged birds of prey occurring
in two distinct populations—one in Africa, the other in India—that genetic
studies suggest have been separate for nearly one million years. As such,
they are often treated as different species, with the African “subspecies”
Falco chicquera ruficollis given the species name Falco ruficollis.

In both India and Africa, these falcons are often found in open habitats,
though in Africa they may also inhabit riverine forests. They typically hunt
in pairs, sometimes utilizing a coordinated technique in which one falcon
flushes up small birds from below and the other seizes the prey from above.
The prowess to which this attests is perhaps one reason they were once a
favorite among Indian falconers.

The Indian variant of red-necked falcons has been categorized by IUCN as
near threatened due to declining population. The African variant is listed as
of least concern. Many of the animals on O’Reilly covers are endangered;
all of them are important to the world.

The cover illustration is by Karen Montgomery, based on an antique line
engraving from Wood’s Animate Creation. The cover fonts are Gilroy
Semibold and Guardian Sans. The text font is Adobe Minion Pro; the
heading font i1s Adobe Myriad Condensed; and the code font is Dalton
Maag’s Ubuntu Mono.

	Preface
	Who Is This Book For?
	Overview
	Part I: The Basics
	Part II: The Architecture of Falco
	Part III: Running Falco in Production
	Part IV: Extending Falco

	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments
	Leonardo
	Loris

	I. The Basics
	1. Introducing Falco
	Falco in a Nutshell
	Sensors
	Data Sources
	Rules
	Data Enrichment
	Output Channels
	Containers and More

	Falco’s Design Principles
	Specialized for Runtime
	Suitable for Production
	Intent-Free Instrumentation
	Optimized to Run at the Edge
	Avoids Moving and Storing a Ton of Data
	Scalable
	Truthful
	Robust Defaults, Richly Extensible
	Simple

	What You Can Do with Falco
	What You Cannot Do with Falco
	Background and History
	Network Packets: BPF, libpcap, tcpdump, and Wireshark
	Snort and Packet-Based Runtime Security
	The Network Packets Crisis
	System Calls as a Data Source: sysdig
	Falco

	2. Getting Started with Falco on Your Local Machine
	Running Falco on Your Local Machine
	Downloading and Installing the Binary Package
	Installing the Driver
	Starting Falco

	Generating Events
	Interpreting Falco’s Output
	Customizing Your Falco Instance
	Rules Files
	Output Channels

	Conclusion

	II. The Architecture of Falco
	3. Understanding Falco’s Architecture
	Falco and the Falco Libraries: A Data-Flow View
	Drivers
	Plugins
	libscap
	Managing Data Sources
	Supporting Trace Files
	Collecting System State

	libsinsp
	State Engine
	Event Parsing
	Filtering
	Output Formatting
	One More Thing About libsinsp

	Rule Engine
	Conclusion

	4. Data Sources
	System Calls
	Examples
	Observing System Calls

	Capturing System Calls
	Accuracy
	Performance
	Scalability
	So What About Stability and Security?
	Kernel-Level Instrumentation Approaches

	The Falco Drivers
	Which Driver Should You Use?
	Capturing System Calls Within Containers

	Running the Falco Drivers
	Kernel Module
	eBPF Probe
	Using Falco in Environments with No Kernel Access: pdig
	Running Falco with pdig

	Falco Plugins
	Plugin Architecture Concepts
	How Falco Uses Plugins

	Conclusion

	5. Data Enrichment
	Understanding Data Enrichment for Syscalls
	Operating System Metadata
	Container Metadata
	Kubernetes Metadata

	Data Enrichment with Plugins
	Conclusion

	6. Fields and Filters
	What Is a Filter?
	Filtering Syntax Reference
	Relational Operators
	Logical Operators
	Strings and Quoting

	Fields
	Argument Fields Versus Enrichment Fields
	Mandatory Fields Versus Optional Fields
	Field Types

	Using Fields and Filters
	Fields and Filters in Falco
	Fields and Filters in sysdig

	Falco’s Most Useful Fields
	General
	Processes
	File Descriptors
	Users and Groups
	Containers
	Kubernetes
	CloudTrail
	Kubernetes Audit Logs

	Conclusion

	7. Falco Rules
	Introducing Falco Rules Files
	Anatomy of a Falco Rules File
	Rules
	Macros
	Lists
	Rule Tagging
	Declaring the Expected Engine Version

	Replacing, Appending to, and Disabling Rules
	Replacing Macros, Lists, and Rules
	Appending to Macros, Lists, and Rules
	Disabling Rules

	Conclusion

	8. The Output Framework
	Falco’s Output Architecture
	Output Formatting
	Output Channels
	Standard Output
	Syslog Output
	File Output
	Program Output
	HTTP Output
	gRPC Output
	Other Logging Options

	Conclusion

	III. Running Falco in Production
	9. Installing Falco
	Choosing Your Setup
	Installing Directly on the Host
	Using a Package Manager
	Without Using a Package Manager
	Managing the Driver

	Running Falco in a Container
	Syscall Instrumentation Scenario
	Plugin Scenario

	Deploying to a Kubernetes Cluster
	Using Helm
	Using Manifests

	Conclusion

	10. Configuring and Running Falco
	Configuring Falco
	Differences Among Installation Methods
	Host Installation
	Containers
	Kubernetes Deployments

	Command-Line Options and Environment Variables
	Configuration Settings
	Instrumentation Settings (Syscalls Only)
	Data Enrichment Settings (Syscalls Only)
	Ruleset Settings
	Output Settings
	Other Settings for Debugging and Troubleshooting

	Configuration File
	Ruleset
	Loading Rules Files
	Tuning the Ruleset

	Using Plugins
	Changing the Configuration
	Conclusion

	11. Using Falco for Cloud Security
	Why Falco for AWS Security?
	Falco’s Architecture and AWS Security
	Detection Examples

	Configuring and Running Falco for CloudTrail Security
	Receiving Log Files Through an SQS Queue
	Reading Events from an S3 Bucket or the Local Filesystem

	Extending Falco’s AWS Ruleset
	What About Other Clouds?
	Conclusion

	12. Consuming Falco Events
	Working with Falco Outputs
	falco-exporter
	Falcosidekick

	Observability and Analysis
	Getting Notified
	Responding to Threats
	Conclusion

	IV. Extending Falco
	13. Writing Falco Rules
	Customizing the Default Falco Rules
	Writing New Falco Rules
	Our Rule Development Method

	Things to Keep in Mind When Writing Rules
	Priorities
	Noise
	Performance
	Tagging

	Conclusion

	14. Falco Development
	Working with the Codebase
	The falcosecurity/falco Repository
	The falcosecurity/libs Repository
	Building Falco from Source

	Extending Falco Using the gRPC API
	Extending Falco with Plugins
	Preparing a Plugin in Go
	Plugin State and Initialization
	Adding Event Sourcing Capability
	Adding Field Extraction Capability
	Finalizing the Plugin
	Building a Plugin Written in Go
	Using Plugins While Developing

	Conclusion

	15. How to Contribute
	What Does It Mean to Contribute to Falco?
	Where Should I Start?
	Contributing to Falcosecurity Projects
	Issues
	Pull Requests

	Conclusion

	About the Authors

